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Abstract: It is challenging to stabilise an unmanned quad-rotor aerial vehicle 
when a dynamic change in its model parameters or failure of its actuator 
occurs. In this paper, a quad-rotor unmanned aerial vehicle (UAV) is controlled 
based on model reference adaptive control (MRAC) and a linear quadratic 
regulator (LQR). The kinematics and dynamics of the quad-rotor are calculated, 
and Lyapunov’s direct stability method is used to design the MRAC. In order  
to evaluate the performance of the adaptive control algorithms in the presence 
of thrust loss that may occur due to component failure or physical damage,  
a real quad-rotor is built from scratch using commercial components. Both 
controllers are designed, implemented and tested using AVR microcontrollers. 
Comparison is made between the controllers under normal and faulty  
situations and the effectiveness of the proposed control strategy is verified. 
Simulation and experimental results show that both controllers have 
satisfactory performance under normal conditions and even in the presence of 
the partial loss of thrust that may occur due to the loss of control effectiveness 
in one of the rotors or the damage of one propeller, superior system 
performance is observed using the proposed MRAC controller. 

Keywords: MRAC; model reference adaptive control; LQR; linear quadratic 
regulator; quad-rotor unmanned aerial vehicle; Lyapunov stability method. 
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1 Introduction 

The quad-rotor unmanned aerial vehicle (UAV) is an unpiloted aircraft capable of flight 
without a human operator. It is a small flying robot with four propellers driven by four 
DC motors: front, back, left and right (Das et al., 2009; Beji et al., 2005; Castillo et al., 
2005). As shown in Figure 1, the front (M3) and back (M4) motors rotate clockwise 
while the left (M2) and right (M1) motors rotate counter-clockwise. The basic motion of 
this type of UAVs is generated by varying the rotor speeds of the four motors. Each rotor 
produces both thrust and torque with respect to the aircraft’s centre of mass. Because the 
rotors spin in opposite directions, the torque on one side of the aircraft cancels  
out the torque on the other side. Therefore, if all rotors spin with the same angular 
velocity, the net torque equals zero and the thrust accelerates the aircraft up in the air 
(Figure 1 (a)). To change the direction of the quad-rotor, a mismatch needs be induced in 
the aerodynamic torque balance by increasing or decreasing the speed of the rotors 
rotating in the same direction. 

The quad-rotor has emerged lately as a popular UAV platform. It can be controlled  
by the rotational speed of the rotors with the potential to take-off, fly, and land  
in a small area (Hoffmann et al., 2007; Hanford et al., 2005; Pounds et al., 2002;  
Tayebi and McGilvray, 2006). In hovering flight, to gain the rolling angle movement 
(Figure 1(b)), the front rotor’s (M3) speed is increased and the back rotor’s (M4) speed is 
decreased by the same amount while maintaining the same thrust on the other two rotors. 
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Likewise, to achieve the pitching angle movement (Figure 1(c)), the right rotor’s (M1) 
speed is increased and the left rotor’s (M2) speed is decreased while maintaining  
the same thrust on the other two rotors. Similarly, yaw moment (Figure 1(d)) is obtained 
by increasing the speed of rotors (M3) and (M4) and decreasing the speed of rotors (M1) 
and (M2). 

Figure 1 Vertical and attitude movements of the quad-rotor: (a) vertical movement; (b) roll 
movement; (c) pitch movement and (d) yaw movement (see online version for colours) 

 

Quad-rotor dynamics are normally controlled by four physical inputs: thrust, pitch, role, 
and yaw. Several control algorithms have been investigated to stabilise the  
quad-rotor (Bouabdallah and Noth, 2004; Madani and Benallegue, 2006; Tarbouchi et al., 
2004; Mokhtari and Benallegue, 2004; Benallegue et al., 2001; Hamel et al., 2007).  
For example, the classical proportional-integral-derivative (PID) control algorithm can be 
used to control it. Since the quad-rotor is by nature an under-actuated system, which 
means that it is able to control all six degrees of freedom with only four inputs, the 
classical PID control algorithm does not work well on this UAV. On the other hand, 
adaptive control algorithms have been used to accommodate systems with parameters 
that are unknown or changing (Morel and Leonessa, 2006; Hamel et al., 2005; Middleton 
and Goodwin, 1988). The adaptive technique is different from other controllers in that it 
does not need a priori information about the uncertain parameters. The output of a plant is 
compared against the output of a model that is driven by a reference signal. The error 
between the model output and the plant output is then used to drive the plant to the 
desired reference model. 

The MRAC algorithm is one of the best control techniques that maintain the stability 
of a system while the system parameters vary slowly or are uncertain (Hsu, 1990;  
Qu et al., 1994). This algorithm creates a closed loop controller with parameters that  
can be updated to change the response of the system so that it tracks the output of a 
reference model. Several approaches such as the MIT rule, Lyapunov stability theory, 
passivity theory, and theory of augmented error were used to design the MRAC.  
All methods except Lyapunov theory were considered very sensitive to the amplitude of 
the reference signal and therefore they do not guarantee convergence or stability 
(Swarnkar et al., 2011). MRAC provides a systematic approach for adjusting controller 
parameters and, therefore, has the potential to improve the performance of the quad-rotor 
in the presence of parameter uncertainty. It also has the capacity to react rapidly to any 
failure without a priori knowledge of such variations in the dynamic characteristics of the 
quad-rotor. 
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The main contributions of the paper are: 

• Using Lyapunov’s direct stability method in the designing of MRAC in order to 
stabilise quad-rotor in the presence of malfunction in actuator’s bearing. 

• Augmentation of baseline controller with Lyapunov based MRAC for the purpose of 
fast adaptation. 

Facing the problem of malfunction in actuator’s bearing, the motivation of this project is 
to develop a control mechanism as a hand on for those quad-rotor having an original 
controller. This controller can be implemented for any military or commercial controller 
without replacing or changing anything in the used one. Furthermore, the project aims to 
assist technical universities in enhancing the performance of educational controllers that 
they have, and use it as a practical demonstration for the impact of malfunction in 
actuator’s bearing in the control process of a quad-rotor. 

Quad-rotors possess tremendous advantages over other types of UAVs in terms of 
manoeuvring capability, safety, weight, and cost. It can be used for applications such as 
search and rescue, surveillance, and remote inspection (Jaimes et al., 2008). One of the 
challenges when constructing this type of vehicles is the stabilisation problem  
with dynamic changes in the model parameters. In this work, we model and control a 
quad-rotor UAV with parameter uncertainty using the MRAC. The controller is designed 
as the LQR whose parameters are updated by the MRAC using the Lyapunov stability 
method. The remainder of this paper is organised as follows: Section 2 reveals some 
recent research on control algorithms developed for quad-rotor vehicles. In Section 3, the 
kinematic and dynamic model of the quad-rotor is derived. In Section 4, the quad-rotor 
structure is presented. In Section 5, we describe the LQR and the MRAC and explain 
how Lyapunov’s stability theory is used in the design of the MRAC. In Section 6, we 
present the simulation and experimental results as the performance of the MRAC is 
compared with the performance of the LQR when the system is subjected to parameter 
uncertainty and actuator failure. Finally, we summarise the main results of the work in 
Section 7. 

2 Related works 

In recent years, a large number of studies have been conducted on the modelling and 
controlling of quad-rotors (Castillo and Dzul, 2004). Various control algorithms have 
been proposed for indoor (Bouabdallah et al., 2005) and outdoor flights. One of these 
control algorithms is based on the linear quadratic regulator (LQR). The LQR was 
implemented to minimise tracking errors by minimising a cost function (Castillo et al., 
2005; Tayebi and McGilvray, 2006). This provides the best possible performance with 
respect to given measurements. To account for uncertainties and external disturbances 
during the outdoor flight, model reference adaptive control (MRAC) was investigated 
with different types of quad-rotors (Whitehead and Bieniawskiy, 2010). Morel and 
Leonessa (2006) presented an innovative adaptive control algorithm using back stepping 
to solve the problem of trajectory tracking. They obtained the control law and then tested 
it through numerical simulations. Coza and Macnab (2006) proposed a new adaptive 
fuzzy control to stabilise the quad-rotor helicopter in the presence of sinusoidal  
wind disturbance. They developed a set of membership functions as a guide to the 



   

 

   

   
 

   

   

 

   

    Controlling an unmanned quad-rotor aerial vehicle with model 299    
 

    
 
 

   

   
 

   

   

 

   

       
 

adaptation process. The adaptive fuzzy control method does not require an accurate 
system model and has been shown to be robust against disturbances. 

MRAC techniques based on Lyapunov stability theory have been developed for 
adaptive control (Sastry and Bodson, 1989; Costa et al., 2003). Kaufman et al. (1998) 
presented the adaptive technique based on the concept of a generator tracker. This 
technique allows the system to follow sinusoidal reference commands. Sadeghzadeh et al. 
(2011) tested two popular controllers, i.e., the PID controller and the adaptive controller. 
Both controllers work well for controlling the height of the quad-rotor. They claimed that 
MRAC ensures stability of the quad-rotor immediately after a failure occurs. Palunko and 
Fierro (2011) addressed the problem of quad-rotor stabilisation and trajectory tracking 
with dynamic changes in the aircraft’s centre of gravity. They designed three controllers: 
a linear PD controller, a feedback linearisation controller, and an adaptive controller. 
They proved that the adaptive controller is able to stabilise the quad-rotor and 
compensate for any changes in the centre of gravity, while the PD controller and 
feedback linearisation controller are not able to cope with dynamic changes in the centre 
of gravity. The same technique was implemented as Antonelli et al. (2013) considered 
some external disturbance in quad-rotor design such as the possibility of wrong 
estimation of the centre of mass. 

There has also been research on the integration of multiple control techniques to 
develop a robust controller for quad-rotors under external disturbance and parameter 
uncertainty. Bouabdallah and Noth (2004) compared the PID controller with the LQ 
controller for stabilising an indoor quad-rotor. They concluded that the PID controller is 
able to stabilise the quad-rotor and achieve more robust results than the LQ controller. 
Adigbli et al. (2007) compared the back-stepping and sliding-mode control techniques 
against the PID controller. They showed that the PID controller cannot be used as an 
effective technique for tracking problems. Varga and Bogdan (2009) showed that a fuzzy 
Lyapunov-based controller can be used as an effective technique for tracking tasks with a 
predefined trajectory. Wai (2007) presented an adaptive fuzzy sliding-mode controller. 
Adjustment of the fuzzy parameters was based on Lyapunov stability theory. The 
controller was robust to uncertainties that exist in practical applications. Bouadi et al. 
(2011) handled modelling inaccuracies and presented an adaptive sliding mode controller 
for the quad-rotor attitude stabilisation and altitude trajectory tracking. Their adaptation 
law was based on Lyapunov stability theory. 

3 Kinematics and dynamics of quad-rotors 

To develop a control strategy, a mathematical model of the quad-rotor is derived based 
on its kinematics and dynamics. The kinematic equations provide a means to understand 
the motion of the vehicle, whereas the dynamic model provides an in-depth view of the 
relation that governs the forces and the resulting accelerations. 

3.1 Kinematics of quad-rotors 

In order to describe a quad-rotor’s motion, two reference frames are needed and these are 
shown in Figure 2: an earth frame (E-frame) and a body frame (B-frame). A quad-rotor 
has 12 governing state variables which can be divided into four groups: three linear 
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position variables, three linear velocity variables, three attitude variables, and three 
angular velocity variables. The linear position of the quad-rotor centre of mass is 
determined by the coordinates of the vector from the origin of the E-frame to the origin of 
the B-frame. The vector with respect to the E-frame is [ ] . T

EP x y z=  The vehicle’s 
attitude is defined by the orientation of the B-frame with respect to the E-frame given by 

[ ] ,T
EA θ ψ= Φ  where φ, θ and ψ denote the vehicle’s roll, pitch, and yaw along the 

three orthogonal body axes x, y, z, respectively. The linear velocity of the quad-rotor is 
denoted by vector [ ] , T

BV u v w=  while the angular velocity is expressed with respect 
to the reference frame as [ ] . T

BW p q r=  Therefore, the linear position and the 
angular position are defined in the E-frame, while the linear velocity, the angular 
velocity, the forces and torques are defined in the B-frame. To calculate the linear 
velocity in the E-frame (VE), VB must be transformed using the rotation matrix R that goes 
from the B-frame to the inertial frame. 

 E E BV P R V= = ⋅�  (1) 

 
. ,

x u
y R v
z w

   
   =   
      

�
�
�

 (2) 

where R is the airframe orientation in space which can be written as 
( ) ( ) ( ).R R R Rθ ψ= Φ × ×  Here, R(φ), R(θ), and R(ψ) denote the rotations along x-axis 

(roll), y-axis (pitch), and z-axis (yaw), respectively. 

( ) ( )

( )
( ) ( )
( ) ( )

1 0 0 cos(θ) 0 sin(θ)
0 cos(Φ) -sin(Φ) , 0 1 0 ,  
0 sin(Φ) cos(Φ) sin(θ) 0 cos(θ)

cos sin 0
sin cos 0

0 0 1

R R

R

θ

ψ ψ
ψ ψ ψ

   
   Φ = =   
   −   

− 
 =  
  

 (3) 

cos( ).cos( ) sin( ).sin( ).cos( ) cos( ).sin( ) cos( ).sin( ).cos( ) sin( ).sin( )
cos( ).sin( )  cos( ).cos( ) sin( ).sin( ).sin( )  sin( ).cos( ).sin( ) sin( ).cos( )

sin( ) sin( ).cos( ) cos( ).cos( )
R

θ ψ θ ψ ψ θ ψ ψ
θ ψ ψ θ ψ θ ψ ψ

θ θ θ

Φ − Φ Φ + Φ
= Φ + Φ Φ − Φ

− Φ Φ
.

 
 
 
  

 (4) 

Using equation (2), , ,x y z� � �  can be written as: 

( .  )   ( .   . .  )   ( .   . .  )x C C u C S S C S V S S C S C wθ ψ ψ ψ θ ψ θ ψ= + − Φ + Φ + Φ + Φ�  (5) 

 ( . )   ( .   . .  )  ( .   . .  )  y C S u C C S S S V S C C S S wθ ψ ψ ψ θ ψ θ ψ= + Φ + Φ + − Φ + Φ�  (6) 

( ) ( ) ( )      .     .   ,z S u S C V C C wθ θ θ= − + Φ + Φ�  (7) 

where, cos(), sin(), tan().C S T= = =  
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Figure 2 The body and earth frames of a quad-rotor (see online version for colours) 

 

As we did for the linear velocity, the angular velocity of the quad-rotor in the B-frame 
can be transferred to obtain one in the E-frame as: 

. E E ib BW A L W= =�  (8) 

. ,ib

p
L q

r
θ
ψ

 Φ  
   =   
     

�
�

�
 (9) 

where, Lib is a rotation matrix on components from the inertial frame to the B-frame. It is 
given by: 

1 tan( ).sin( ) tan( ).cos( )
0 cos( ) sin( ) .
0 sec( ).sin( ) sec( ).cos( )

ibL
θ θ

θ θ

Φ Φ 
 = Φ − Φ 
 Φ Φ 

 (10) 

Therefore, we have 

( ) ( ) ( ).sin .tan . cos .tan( )p q rθ θΦ = + Φ + Φ�  (11) 

( ) ( )cos( ) . sin( ) .q rθ = Φ − Φ�  (12) 

. sin( ). sec( ) . cos( ) .sec( ).q rψ θ θ= Φ + Φ�  (13) 

3.2 Dynamics of quad-rotors 

The quad-rotor movement is controlled by the angular speed of the four rotors (Wi). Each 
rotor produces a thrust and a torque, and these two parameters generate the main thrust 
(Tf), airframe roll torque (τφ), pitch torque (τθ), and yaw torque (τψ). The upward lift force 
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and drag torque generated by each motor propeller are given by 2 i m if D w=  and 
2 ,i t iD wτ =  respectively, where Dm and Dt are constant and represent the thrust and drag 

torque factors. As shown in Figure 2, the only forces acting on the quad-rotor are the total 
propeller thrust (Tf) and the gravitational force fg. Therefore, the net force acting on the 
quad-rotor with respect to the E-frame is: 

 R( ,)d gf F f f= − +  (14) 

where F is the thrust vector in the B-frame, fg is the gravitational force, and fd is the drag 
force. The total thrust applied to the quad-rotor is given by: 

4 4
2

1 1

,f m i
i i

T fi D w
= =

= =∑ ∑  (15) 

Hence 

0
0 .

f

F
T

 
 =  
  

 (16) 

The gravitational force applied to the quad-rotor with respect to the E-frame is given by: 

0
  0 ,

1
gf mg

 
 =−  
  

 (17) 

where m is the total mass of the quad-rotor and g is the gravity constant. A drag force acts 
on the quad-rotor body opposite to the direction it moves can be written as: 

 
x

d i y

z

K x
f K P K y

K z

 
 = =  
  

�
� �

�
 (18) 

where Ki is the drag coefficients and fd is a function of several parameters such as aircraft 
speed, wing area, and air density. Let ρ, A, V and r denote the air density, frontal area 
perpendicular to the axis of motion, velocity relative to the air, and radius of rotation, 
respectively. By assuming that the density of the air is constant, we can express the above 
equation as: 

2 
2

.1
di if K AVρ=  (19) 

fd is negligible at low speed and approximately zero when considering the dynamic 
behaviour of the quad-rotor. Therefore, the final equations that described the dynamic 
behaviour of the quad-rotor are given by: 

0 0
0 0

f

x
m y R

z T mg

    
    = −    

        

��
��
��

 (20) 
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1 (cos( ).sin( ).cos( ) sin( ).sin( ))fx T
m

θ ψ ψ= Φ + Φ��  (21) 

1 (sin( ).cos( ).sin( ) sin( ).cos( ))fy T
m

θ ψ ψ= Φ − Φ��  (22) 

( ) ( )1 (cos .cos ) .fz T g
m

θ= Φ −��  (23) 

The above equations can be simplified by defining a control input that represents the total 
thrust generated by the four propellers along z-axis. Let us define u1 as: 

4
2

1
1

.i
i

u w
=

=∑  (24) 

Then, the equation of motion can be reformulated as: 

1(cos( ).sin( ).cos( ) sin( ).sin( ))mD
x u

m
θ ψ ψ= Φ + Φ��  (25) 

1(sin( ).cos( ).sin( ) sin( ).cos( ))mD
y u

m
θ ψ ψ= Φ − Φ��  (26) 

1(cos( ).cos( )) .mD
z u g

m
θ= Φ −��  (27) 

Airframe torques in the B-frame are denoted by roll, pitch, and yaw as: 

,o

x
j y C

z

φ

θ

ψ

τ
τ θ
τ ψ

   Φ 
     = −    

          

���
���
���

 (28) 

Where,  
T

oC θ ψ Φ 
�� �  represents the Coriolis term and will be ignored in the following 

equations: 

  xj Fx lφτ = Φ = ∆��  (29) 

  yj Fy lθτ θ= =∆��  (30) 

  .zj Fz lψτ ψ= =∆��  (31) 

In terms of the torque exerted by each motor, the above equations become: 

3 4

1 2
4

1

( )
( ) .

i

A

M

f f l
f f l

φ

θ

ψ

τ
τ τ

τ τ

   −  = = −         ∑
 (32) 
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Therefore, 
2 2

3 4 3 4( ) ( )m xf f l lD w w jφτ = − = − = Φ��  (33) 

( ) ( )2 2
1 2 1 2m yf f l lD w w jθτ θ= − = − = ��  (34) 

3 4 1 2

4

1

,
iM M M M M zjψτ τ τ τ τ ψτ= = + − − =∑ ��  (35) 

where, l is the distance between the motors and the centre of gravity, and τMi is the torque 
produced by each motor. The total torque produced by each rotor is equal to: 

2 ,  mi r i t ij w D wτ = +�  (36) 

where jr is the rotational inertia of rotor i about its z-axis, and iw�  is the angular 
acceleration of the rotor. In steady state, w is constant and 0.iw =�  Therefore, the torque 
produced by the rotor’s propeller is equal to the reactive torque. 

2  .t
mi t i

m

D
D w fi

D
τ = =  (37) 

The total torque about the quad-rotor z-axis is given by the sum of all the torques as: 

( )
4

2 2 2 2
3 4 1 2

1
iM t zD w w w w jψτ τ ψ= = + − − =∑ ��  (38) 

( )
4

3 4 1 2
1

.
i

t
M z

m

D
f f f f j

Dψ ψτ τ= = + − − =∑ ��  (39) 

Typically, equation (36) represents the motor dynamics as a simple first order differential 
equation. The above equations can be simplified by defining control inputs u2, u3 and u4 
that correspond to the collective roll, pitch, and yaw forces generated by the four 
propellers, respectively. 

2 2
2 3 4( ).u w w= −  (40) 

2 2
3 1 2( )u w w= −  (41) 

4 3 4 1 2 .u f f f f= + − −  (42) 

Then the equation of motion can be reformulated as: 

2  /mu lD jxΦ =��  (43) 

3  /mu lD jyθ =��  (44) 

4 / ,u C jzψ =��  (45) 

where C is the force-to-moment scaling factor and j is the rotational inertia around x, y, 
and z. Finally, the equations of motions of the quad-rotor on the x, y and z become: 
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1(cos( ).sin( ).cos( ) sin( ).sin( ))mD
x u

m
θ ψ ψ= Φ + Φ��  (46) 

1(cos( ).sin( ).cos( ) sin( ).sin( ))mD
x u

m
θ ψ ψ= Φ + Φ��  (47) 

1(cos( ).cos( ))mD
z u g

m
θ= Φ −��  (48) 

2  /mu lD jxΦ =��  (49) 

3  /mu lD jyθ =��  (50) 

4 / .u C jzψ =��  (51) 

4 Quad-rotor structure 

Figure 3 shows the system architecture of the quad-rotor. The hardware structure of the 
quad-rotor has two stages. The first stage consists of the mechanical parts, and the second 
stage consists of the electronic parts. As shown in Figure 4(a)–(c), the mechanical parts 
include a central hub, four aluminium booms, four motor mounts, four brushless DC 
motors, and four propellers (two of these rotate clockwise, and the other two rotate 
counter-clockwise). The frame of the quad-rotor is composed of four aluminium booms 
attached to the hub which carries the avionics and power supply. The 30-cm aluminium 
booms with 2 × 2 cm2 cross-area are used because of their light weight. Motors and 
propellers are attached at the ends of the aluminium booms. Brushless three-phase  
out-runner DC motors rated for 1350 KV/310 W are used in this project. Four propellers 
10 × 45 are mounted on the motors, two pieces for the standard rotation and two pieces 
for the right-hand rotation. The propeller is attached to the DC motor through a standard 
accessory pack. 

Figure 3 Quad-rotor system architecture (see online version for colours) 
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Figure 4 Structure of the quad-rotor: (a) aluminium based structure; (b) power distribution  
board; (c) brushless DC motors; (d) flight control board; (e) speed controllers and  
(f) quad-rotor frame (see online version for colours) 

 

As shown in Figure 4(d)–(f), a Hobby King KK2.0 multi-rotor flight control board is 
attached to the central hub. This board consists of the AtmelMega324PA microcontroller, 
dual chip three-axis gyros, a single chip three-axis accelerometer, and an LCD for  
on-board configuration. To control the speed of the DC motors in order to control the 
quad-rotor, the flight control board is attached to the 30-A brushless speed controller 
(ESC). The ESC converts PWM signals into a three-phased signal, which continuously 
rotates the motor. The Atmel Mega324PA microcontroller takes sensor inputs along with 
the signal coming from the receiver and performs a direct MRAC on the four motors by 
varying the PWM signals. The system is powered by a 4000 mAh, 11.1 volt lithium 
polymer battery. 

5 Flight controller design 

This section details the application of the MRAC algorithm to the quad-rotor platform. 
The Lyapunov stability argument is used to design the adaptive controller and the 
reference model used for the controller is generated using the LQR and the quad-rotor 
dynamics and kinematics equations derived in the previous section. The control problem 
is formulated in the presence of the thrust loss that may occur due to component failure or 
physical damage. 

5.1 The model reference adaptive control (MRAC) algorithm 

Two major categories of the MRAC exist in the literature: direct and indirect. The direct 
method is selected in this work and its control structure is shown in Figure 5. It consists 
of a quad-rotor model to be controlled, a reference model, a controller, and an adjustment 
mechanism. The desired behaviour of the quad-rotor is represented by a reference model. 
The output of the quad-rotor model in this technique is compared against the output of 
the reference model that is driven by a reference signal. The error between the output of 
the reference model and the output of the quad-rotor model is used to drive the 
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adjustment mechanism. The parameters of the controller are adjusted so as to eliminate 
the error between the quad-rotor model and the reference model. The LQR controller 
generates an input signal for the quad-rotor in order to follow a command signal, and 
Lyapunov stability theory is used for the adjustment mechanism to update the controller 
parameters so that the quad-rotor output will better match that of the desired reference 
model. 

5.2 Flight control algorithm 

In this section, we present the design of the flight control system that can stabilise the 
quad-rotor based on the two algorithms: LQR and MRAC. 

Figure 5 Structure of a model reference adaptive control system (see online version for colours) 

 

Figure 6 Full state feedback LQR controller (see online version for colours) 

 

5.2.1 Linear quadratic regulator (LQR) 

The full state feedback LQR controller is one of the most important state-space-based 
optimal controllers that provides practical feedback gains (Figure 6). In LQR problems, 
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the system dynamics are described by a set of linear differential equations and the system 
cost is described by a quadratic function. The continuous-time linear system defined on 
the interval t ∈ [t0, t1] can be written in the state-space form as: 

nx Ax Bu G= + +�  (52) 

  ,y Cx Du= +  (53) 

where x ∈ Rn, ∈ Rm, and y ∈ Rp. x, u, y, and G are the state vector of the system, the 
control input, the measured output, and the disturbance signal, respectively. A ∈ Rn × n, 
B ∈ Rn, and C are the system matrix, control input matrix, and the output matrix, 
respectively. If the disturbance signal Gn is ignored, the LQR controller is given by: 

[ ]
1 1

2 2
1 2 , .

.
,

.

r

r
r n

n rn

x x
x x

u Kx x K K K

x x

   
   
   = − + = − +
   
   
   

…  (54) 

The close-loop system using this control becomes: 

( )  ,rx A BK x Bx= − +�  (55) 

where xr is the reference value, which is assumed to be zero since it does not affect the 
stability of the system but affects the steady state error. The gain matrix K of the  
close-loop system which solve the LQR problem is: 

1 ,TK R B P−=  (56) 

where P is a unique, positive semi-definite solution to the Riccati equation given in 
equation (57), in order to minimise the cost function given in equation (58). 

1 0 T TA P PA PBR B P Q−+ − + =  (57) 

( )
0

d . 
x T TJ x Qx u Ru t= +∫  (58) 

Using the LQR-based controller, the first step is to select and tune the weighting matrices 
Q and R by simulations. Q is an n × n semi-positive definite symmetric matrix that weighs 
the states, and R is an m × m positive definite symmetric matrix that weighs the inputs.  
By solving equation (57) using MATLAB routine [ ], lqr( , , , ),K P A B Q R=  the feedback 
K can be computed and 1 Tu R B P x−= −  is optimal for any initial state x(0). In order to 
use the designed LQR controller, the nonlinear system derived in equations (46)–(51) 
must be presented in a state-space form and linearised around a certain operating point. 
The state and input vectors are given in equations (59) and (60). 

[                   ]Tx x x y y z z θ θ ψ ψ= Φ Φ �� � � ��  (59) 

1 2 3 4[      ]Tu u u u u=  (60) 

1 2 3 4 5 6 7

8 9 10 11 12

,   , , ,   ,  ,  ,

 ,   ,  , ,

x x x x x y x y x z x z x

x x x x xθ θ ψ ψ
= = = = = = = Φ

= Φ = = = =

� � �
�� �

 (61) 
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1 2 2 3 4 4 5 6 6 7 8 8

9 10 10 11 12 12

 ,  ,  , ,   ,  , ,   ,

 ,  , , .

x x x x x x x y x x x z x x x

x x x x x xθ ψ
= = = = = = = = Φ

= = = =

��� � �� � � �� � � � ���
�� ��� � � �

 (62) 

The non-linearised equations of motion can be written as: 

( )

2

1 1 7 9 11 7 11

2
4

3

4 1 9 7 11 7 11

5
6

6

1 7 97

8 8

9 2

10 10

11 3

12

 

(cos .sin .cos sin .sin )

(sin .cos .sin sin .cos )

, d / d (cos .cos )

 /

 

m

m

m

m

x
Dx u x x x x x
mx

xx
Dx u x x x x x
m

x x
x Dx f x u t u x x gx m
x x
x u lD jx
x x
x u lD
x

  +
 
 
 
 

− 
 
 
 = = =  −
 
 
 
 
 
 
 
  

�

12

4

.

/

/

m jy
x

u C jz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (63) 

The nonlinear system ( ), ,x f x u=�  ( )y h x=  should be linearised around an operating 
point (x0, u0). Consider the state as 0 ,x x x= + ∆  where x is the actual state, x0 is the 
operating point, and ∆x is the deviation from the operating point. 0x x x∆ = −� � � , x0 is 
constant and ( ) ( )0 0, , .x x f x u f x x u u∆ = = = + ∆ + ∆� �  Simplify this equation using Taylor 
expansion by assuming that , ux∆ ∆  are small, thus ( ) ( )0 0 0 0, /  ,x x f x u f x x u x∆ = = + ∂ ∂ ∆� �   

( )0 0/ , .f u x u u+∂ ∂ ∆  By assuming that ( )0 0, 0,x u =  the previous equation becomes 
.x x A x B u∆ = = ∆ + ∆� �  Doing the same thing for the output y, ( )0y h x x= + ∆  

( ) ( )0 0/  h x f x x x C x= + ∂ ∂ ∆ = ∆ , where ( )0 0,h x =  and the matrices are: 

1 1 1 1 1 1

1 1 1

1 1 1

.
n m n

n n n n p p

n m n

f f f f h h
x x u x x x

A B C
f f f f h h
x x u x x x

 ∂ ∂ ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂ ∂ ∂    
    = = =
    ∂ ∂ ∂ ∂ ∂ ∂    
    ∂ ∂ ∂ ∂ ∂ ∂     

" " "

# % # # % # # % #

" " "

 (64) 

As a starting point, assuming that all the states are measurable, let 2 20 2 ( ) / ,mu u u D= + ∆  
3 30 3 ( ) / ,mu u u D= + ∆  4 40 4 ( ) / ,u u u c= + ∆  and let the total thrust be equal to 
1 10 1  .u u u= + ∆  As we seek the hovering state, the following conditions should be hold: 
0   [0  0  0  0   0  0  0  0  0  0  0],x Z=  10 ,u mg=  20 30 40 0 .u u u= = =  Applying equation (64) 

at the operating point, we have matrices A and B as: 
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0 1 0 0 0 0 0 0 0 0 0 0 0
  

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/  
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

g

g

m
A B

 
 
 
 
 − 
 
 
 = = 
 
 
 
 
 
 
 
  

0 0 0
     

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

.
0 0 0
/ 0 0

0 0 0 0
0 0 / 0
0 0 0 0
0 0 0 1/

l jx

l jy

jz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (65) 

5.2.2 Tracking a reference input 

Our goal in this subsection is to drive the output y(t) to a given bounded time-varying 
reference input r(t). As shown in Figure 7, we add an integrator to the error signal and 
create a state within the controller that computes the integral of the error signal.  
The augmented open-loop dynamics of the system is given by: 

d ,
d

x Ax Bu Ax Bu
w y r Cx rt

+ +     
= =     − −     

 (66) 

where w is a new state which integrates the controller error. Equation (66) can be written 
in state space as: 

0   0
.

0 0
x A x B

u r
w C w I
         

= + +         −         

�
�

 (67) 

This leads to the open-loop system 

.a a a a rx A x B u B r= + +�  (68) 

With the output [ ]0 .a a ay C x C x= =  
The output tracking error is given by ( ) ( ) ( ) .ye t y t r t w= − = �  The control input is 

.iu Kx K w= − −  The gain Ki does not affect the stability of the system, but it affects the 
steady state error. Control input stated above can be simplified to ,a aK x= −  where 

[ ]a iK K K=  and [ ] . T
ax x w=  The feedback gain Ka (nominal feedback gain K and 

feed forward gain Ki) is selected using the LQR technique. Therefore, under the 
assumption that all model parameters are known, the augmented close-loop system 
becomes: 

( ) ,a a a a a r a a rx A B K x B r A x B r= − + = +�
�

 (69) 

where xa(t) is the augmented state and r(t) is a continuous reference input. 
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Figure 7 Full state feedback LQR controller with an integrator (see online version for colours) 

 

5.2.3 Design of adaptive controller 

The MRAC approach based on the Lyapunov’s stability theory is presented in this 
subsection. In this approach, the output response of the quad-rotor model is forced by the 
adaptive controller to track the response of a reference model irrespective of the  
quad-rotor parameter variations. The approach consists of two controllers: a baseline 
controller and an adaptive controller. The baseline controller is an augmented  
LQR controller that yields nominal performance in the absence of failure, while the 
adaptive controller is used to adjust controller parameters to eliminate the error between 
the quad-rotor model and the reference model outputs. Two parameters ( )1 tθ�  and ( )2 tθ�  
are added to the baseline controller to define the adaptive controller law. These 
parameters mainly depend on the gain and are adjusted by the adaptation mechanism 
which is driven by the Lyapunov stability arguments. 

Let the plant in the MRAC be modelled as p p p px A x B uσ= +�  with two unknown 
parameters Ap, and σ. Here,   m mRσ ×∈  is an unknown diagonal matrix with strictly 
positive diagonal elements 0  1iσ< ≤  that model actuator failures, and Ap models the 
parametric uncertainty. Ap, Bp, and σi can be written in the canonical form as: 

1

2

1 2

0 1 0 σ 0 0 0
0 σ 0

.
0 0 1

0 0 σ 0

a p i

n i

B

A B

a a a

σ

    
    
    = = =
    
    − − … −     

"
# # % # "#

" # # % ##
"

 (70) 

The reference model is given by the close-loop system ,m m m m mx A x B rσ= +�  with the 
baseline controller .m mu K x= −  Am and Bm have the same shape as Ap and Br given above 
except that ai becomes 1.mia =  By assuming that .mxm

m Iσ =  and Am and Bm are known to 
the controller, the reference model becomes similar to the one given in equation (69). 

To eliminate the effects of the parametric uncertainty such as mass, system inertia, 
thrust, and drag factors and the loss of actuator effectiveness, we choose the adaptive 
controller to be ( ) ( )adu t Z tθ= �  such that xp → xm for any reference input signal r(t). 

( ) ( )1 2( )t t tθ θ θ =  
� � �  represents the adaptive control gains that need to be adjusted 

through the adaptive law, and ( ) ( )
T

pZ x t r t =    represents the measured values. Adding 
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the baseline to the adaptive controller, the proposed control law becomes 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 ( ) .ad bl p p pu t u t u t t x t t r t k x tθ θ= + = + −� �  Substitute this control law in 

the model that is dedicated to the MRAC, the close-loop system becomes: 

( ) ( )1 2 .p p p p p p px A B B K x B rσθ σ σθ= + − +� � �  (71) 

If we define the adaptive error terms as: 
*

1 1 1( )  ( )t tθ θ θ= −�  (72) 

*
2 2 2( )  ( .)t tθ θ θ= −�  (73) 

Equation (71) becomes: 

( ) ( )* *
1 1 2 2 .p p p p p p p p px A B B B K x B B rσθ σθ σ σθ σθ= + + − + +�  (74) 

It is clear from the above equation that there exist constant parameters like *
1θ  and *

2θ  
such that *

1( ) ,p p p p mA B B K Aσθ σ+ − = �  and ( )*
2 .p m m mB B Bσθ σ= = �  In other words, if the 

adaptive term θ�  is adjusted as it approaches θ*, the adaptive error term θ will converge 
to zero, and the dynamics of the close-loop system will match the dynamics of the new 
reference model: 

m m m mx A x B r= +� � �  (75) 

Define the close-loop tracking error dynamics of the MRAC as ( ) ( ) ( ).p me t x t x t= −  
Therefore, differentiating e(t) yields 

( ) ( ) ( ) ( )1 2( ) ( ( )) ( ).m p p pe t A e t B t x t B t r tσθ σθ= + +� �  (76) 

If we define the parameter estimate error to be ( ) ( )1 2( )
T

t t tθ θ θ=     and 
( )( ) ( ) ,

T

pt x t r t =    we have: 

( ) ( ) ( )( ( )) .m pe t A e t B t x tσθ= +��  (77) 

To design a suitable adaptation law, let us define the Lyapunov function as: 

( ) ( ) ( ) 1( ), ( ) ( ) ( ),T Tv e t t e t Pe t t tθ σ θ θ−= + Γ  (78) 

where, Γ > 0 is a diagonal positive definite matrix of the adaptive gains, and P is a unique 
symmetric positive definite solution to the algebraic Lyapunov equation given by: 

,m
T
m P P QA A+ = −��  (79) 

with Q being any symmetric positive definite matrix. By differentiating ν(e, θ) with 
respect to time, we have: 

1 1

1

1

( 1)

 σ σ

2 2 σ  

2  2  

2 ( ).

T T T T

T T

T T T
m p

T T T
p

e Pe e Pe

e Pe

e AP e B x

e Qe e PB x

ν θ θ θ θ

θ θ

σ θ σ θ θ

σθ θ

− −

−

−

−

= + + Γ + Γ

= + Γ

 = + + Γ 
= − + + Γ

� �� � �
��

� �

�

 (80) 
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Clearly, by choosing the parameter update rule to be    ,T
pxe P Bθ = − Γ�  the Lyapunov 

theorem is satisfied and error is minimised. Finally, the adaptive terms are given as: 

( )1

2

 sgn Γ .p T
p

x
e P B

r
θ

σ
θ

     = −      

��
��

 (81) 

6 Simulation and experimental results 

A simulation and a flight test in an outdoor environment were conducted to validate the 
control approaches. 

6.1 Quad-rotor parameters 

As shown in Figure 8, the arm length (L) of the quad-rotor is 30 cm and the total mass  
(mt) of the quad-rotor is 1619 g. Each single rotor weighs 57 g and thus the net weight of 
the rotors 1 2 3 4 228 g.rm m m m m= + + + =  To simplify the process, we assume that the 
total mass of the quad-rotor excluding the net weights of the rotors is homogeneous and 
distributed inside the sphere of radius R = 7 cm. The moment of inertia of the sphere is 

22
5 , ( ) R t rj m m R= −  and the moment of inertia for a point-mass (motor) is 2 .r rj m L=  

The moment of inertia along axes x, y and z can be calculated as: 

( ) ( )2 2 222  1.391 (0.07)  2 0.057 (0.3) 0.001298636 .
5x R r gj j j k m= + = + =  

( ) ( )2 2 222  1.391 (0.07)  2 0.057 (0.3) 0.01298636 .
5y R r gj j j k m= + = + =  

( ) ( )2 2 224  1.391 (0.07)  4 0.057 (0.3) 0.0232463 .
5

.6 z R r gj j j k m= + = + =  

Therefore, the inertial matrix is given by: 

0 0 0.013 0 0
0 0 0 0.013 0 .
0 0 0 0 0.023

x

y

z

j
J j

j

   
   = =   
      

 

The thrust and drag torque created by each rotor due to the rotation of the propeller can 
be calculated as: 

2 4 ,  ( )i m i m mf D w D c rπρ= =  

2 5,  ( ,)i t i t tD w D c rτ πρ= =  

where Cm is the propeller thrust coefficient, Ct is the propeller drag torque coefficient,  
ρ is the density of the air, and r is the radius of the rotor blade (12.7 cm). Consider  
Cm = 0.1154, Ct = 0.0743 for a propeller 1045, air density is 1.225 kg/m3. Therefore, 
Dm = 0.000092 kg.m, Dt = 0.0000071 kg.m2, and the force-to-moment scaling factor can 
be calculated as: 



   

 

   

   
 

   

   

 

   

   314 A.I.N. Alshbatat et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

( / ). i t m iD D fτ =  

0.114 m.
 

t

m

D
C

D
= =  

Other parameters are shown in Table 1 and Matrices A and B are shown below. 

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 9.81 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 9.81 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

A

 
 
 
 
 − 
 
 
 =  
 
 
 
 
 
 
 
  

 

0 0 0 0
      
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.617 0 0 0
.

0 0 0 0
0 23.1 0 0
0 0 0 0
0 0 23.1 0
0 0 0 0
0 0 0 43.5

B

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

 

Consequently, reference inputs are chosen as  [     , ]T
r r r rR x y z ψ=  and the four desired 

outputs are chosen as x, y, z, and yaw angle ψ. Therefore the output vector, y, is defined 
as   [    ] ,Ty x y z ψ=  the output matrices D = 0, and C is given as: 

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

.
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

C

 
 
 =
 
 
 
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On the other hand, each rotor has an angular speed according to 2
060  ( ),v mw K v vπ= −  

where νm is the motor’s power supply voltage, ν0 is the motor’s dead zone voltage, Kv is 
the RPM per volt, and the term 2

60 vKπ  represents the propeller’s angular speed per volt.  
In this work, a brushless three phase out-runner DC motors rated for 1350 KV/310 W is 
used, powered by a 4000 mAh, 11.1 Volt lithium polymer battery, hence w = 1414 rad/s. 
On the other hand, to achieve the hover state, the net force acting on the quad-rotor is set 
to zero, and the angular speed is given by / 4 ,i mw mg D=  hence wi = 208 rad/s. When 
this value is applied to the formula 2 ,i m if D w=  it results that each propeller should 
provide 4 N (0.408 kg) in order to achieve hovering. This is acceptable since the total 
thrust required by the four propellers is equal to (9.81 × 1.619) N. 

Table 1 Parameters of a quad-rotor 

Parameters Value Unit Description 
L 0.30 m Arm length 
G 9.81 m/s2 Gravitational constant 
mr 0.228 kg Rotors mass 
mt 1.619 kg Total mass of the quad-rotor 
jx 0.013 kg.m2 Moment of inertia around X axes 
jy 0.013 kg.m2 Moment of inertia around Y axes 
jz 0.023 kg.m2 Moment of inertia around Z axes 
W 990 rad/s Rotor angular speed 
Dm 0.000092 kg.m Thrust coefficient 
Dt 0.0000071 kg.m2 Torque coefficient 

6.2 Simulation results 

To design a position controller for the quad-rotor under study, the weighting matrices  
of the LQR controller are chosen to be R = diag(0.01, 0.01, 0.015, 0.015) and 
Q = diag(600 100 600 100 150 30 1 0 1 0 1400 60). The gain matrix K is computed using 
a linearised model of the quad-rotor, and then the performance of the LQR controller is 
evaluated on the nonlinear model. As a starting point, let the initial position of the  
quad-rotor be Pi = (2, –3, 4) and initial attitude αi = (0, 0, pi/4). The task is to stabilise 
and take the aircraft from this situation to a new one with the reference inputs 
Pr = (0,0,0), and αi = (0,0,0). Figure 9 shows the simulation result under ideal condition 
without any external disturbance. 

Figure 8 Quad-rotor schematic showing the total mass of the quad-rotor (see online version  
for colours) 
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Figure 9 Time response of the LQR controller under no uncertainty condition: (a) evolution of x, 
y, and z positions and (b) evolution of yaw angle (see online version for colours) 

 

As can be seen in Figure 9, the output of the quad-rotor is successfully driven towards the 
reference input. This implies that with a reasonable choice of weighting matrices, the 
performance of the LQR controller is satisfactory under the absence of parametric 
uncertainties and it is able to make the quad-rotor follows the desired trajectory. This 
verifies the theoretical claim in equation (55) since disturbance signal Gn is ignored. 

In the second scenario, the quad-rotor UAV is commanded to hover at a fixed 
position. A simulated loss of actuator thrust is injected into the system at time t = 6 s. 
The resulting performance is shown in Figure 10. 

Figure 10 Time response of the LQR controller under a partial loss of actuator thrust:  
(a) evolution of x, y, and z positions and (b) evolution of yaw angle (see online version 
for colours) 

 

As can be seen in Figure 10, the LQR controller exhibits some degradation in the 
performance after 6 s of simulation and does not respond quickly to the loss  
in actuator thrust. This is expected because LQR is a fixed gain controller. In the third 
scenario, our goal is to drive the output y(t) to a given bounded time-varying  
reference input r(t). We add an integrator to the error signal and then the LQR  
controller is evaluated on the nonlinear model. The initial position of the quad-rotor  
is Pi = (–2, –3, –1) and initial attitude is αi = (0, 0, pi/3). The task is to stabilise and  
take the aircraft from this situation to a new one with the reference inputs Pr = (10, 3, 4) 
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and αi = (0, 0, 0). Figure 11 shows the simulation result of the augmented close-loop 
dynamics of the system under ideal condition without any external disturbance. As can be 
seen, the output of the quad-rotor is successfully driven towards the desired trajectory. 
This verifies the theoretical claim in equation (69). 

Figure 11 Time response of the augmented LQR controller under no uncertainty condition:  
(a) evolution of x, y, and z positions and (b) evolution of yaw angle (see online version 
for colours) 

 

In the fourth scenario, 25% loss of control effectiveness is initiated in the fourth actuator 
at time t = 6 s. As shown in Figure 12, the LQR experiences a deviation of 45 cm in the 
position and over five degrees in yaw for the quad-rotor under test. This deviation causes 
the quad-rotor to fly at an altitude of 4.55 m during the loss of 25% of thrust and then 
return back to the normal situation. This is because the controller has been augmented 
with an integrator to the error signal. 

Figure 12 Time response of the augmented LQR controller under a partial loss of actuator thrust: 
(a) evolution of x, y, and z positions and (b) evolution of yaw angle (see online version 
for colours) 

 

In the fifth scenario, we examine the performance of the MRAC controller by 
commanding the quad-rotor to hover at a fixed position. The setting for this scenario is 
similar to the fourth scenario and the resulting performance is shown in Figure 13. As can 
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be seen, the MRAC controller responds quickly to the partial loss of actuator thrust.  
This is because the adjustable controller parameters changed accordingly to compensate 
for the loss of control effectiveness immediately after the loss of 25% of thrust. 

Finally, performances of the baseline controller and the adaptive controller are 
compared in Figure 14. The dashed lines and the solid lines represent results from the 
LQR and MRAC controllers respectively. The results indicate that the LQR experiences a 
deviation and is unable to keep the quad-rotor hovering at a fixed position, while the 
MRAC controller responds quickly and is able to maintain stability. This verifies the 
theoretical claim since LQR is a fixed gain controller, and it cannot provide robustness 
towards parametric uncertainties as the varying gain adaptive controller. 

Figure 13 Time response of the MRAC controller under a partial loss of actuator thrust:  
(a) evolution of x, y, and z positions and (b) evolution of yaw angle (see online version 
for colours) 

 

Figure 14 Comparison between the LQR controller and the MRAC controller: (a) evolution of x, 
y, and z positions and (b) evolution of yaw angle (see online version for colours) 

 

6.3 Experimental results 

As shown in Figure 4(f), many holes were drilled to decrease the total weight of the 
quad-rotor. The Atmel Mega324PA microcontroller, the dual chip three-axis gyros and 
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the single chip three-axis accelerometer are located in a box so as to avoid vibration from 
the propellers. To the right of the flight controller, an RF receiver is attached to the 
central hub and connected to the microcontroller. ECEs are fixed on the aluminium 
booms using plastic cable ties. Several experiments have been conducted to balance the 
propellers and the actuators. As shown in Figure 15, two experiments were conducted to 
test the quad-rotor’s hovering and attitude stabilisation capabilities with a faulty bearing 
installed in motor number four. 

Brushless three-phase out-runner DC motors are used in this project; namely model 
NTM (26-28 1350Kv/310 W). This model required two kinds of bearings (3 × 7 × 3 mm 
and 3 × 8 × 4 mm) and have a 3mm shaft. Experiments were conducted on four motors: 
three of them are undamaged while the fourth one is damaged with a faulty bearing. The 
fault in bearing was made by drilling a hole of 1mm diameter in its outer race. 

In the first experiment, the LQR was implemented, and the quad-rotor was 
commanded to maintain a fixed hover position. As demonstrated in Figure 15(a) and (b), 
the controller was unable to quickly bring the pitch angle error back to a safe range, 
which resulted in a crash. In the second experiment, MRAC was implemented, and the 
quad-rotor was commanded as we did in the first experiment to hover at a fixed position. 
As demonstrated in Figure 15(c) and (d), the controller was able to keep the pitch angle 
within an acceptable range, which indeed maintained the quad-rotor hovering at 4 metre 
above ground. 

Figure 15 Snapshots of the quad-rotor in flight demonstrating the difference in behaviour between 
the LQR and the MRAC controller: (a) the LQR responses at low altitude using a single 
faulty bearing; (b) the LQR responses at high altitude using a single faulty bearing;  
(c) the MRAC responses at low altitude using a single faulty bearing and (d) the MRAC 
responses at high altitude using a single faulty bearing (see online version for colours) 
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In both experiments, bearing fault is practically implemented and their effects on  
quad-rotor stability are studied with the help of LQR and MRAC controllers. There were 
no significant differences between simulation results and flight test results. The only 
difference is the crash that occurred during the first test which may be undesirable 
especially if, for example, the quad-rotor is operating at low altitude. 

7 Conclusion 

This paper presents a quad-rotor UAV which was developed and tested. First, in order to 
eliminate the effects of parametric uncertainty and the loss of actuator effectiveness 
during outdoor flight, the MRAC algorithm based on Lyapunov stability was designed, 
tested, and compared with the LQR controller with full state feedback and integral action. 
Second, both controllers were experimentally tested using an AtmelMega 324PA 
microcontroller. They provided good results for height and attitude stabilisation under 
normal conditions. In the presence of partial loss of thrust, the MARC controller was 
shown to be more effective at stabilising the quad-rotor, whereas the LQR controller was 
not able to compensate for the dynamic changes in the quad-rotor. 
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