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Signaling over AWGN Channels

The 1s and 0s emitted by the communication source are encoded into
distinct signals denoted by s1(t) and s2(t), respectively, which are suitable
for transmission over the analog channel.

Symbols s1(t) and s2(t) are real-valued energy signals.

Ei =

∫ Tb

0
s2i (t)dt, i = 1, 2

AWGN Channel

x(t) = si (t) + w(t), i = 1, 2

where, w(t) is the channel noise.
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Signaling over AWGN Channels

Average probability of symbol error

Pe = π1P(m̂ = 0|1 sent) + π2P(m̂ = 1|0 sent)

where π1 and π2 are the prior probabilities of transmitting symbols 1 and
0, respectively.
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Geometric Representation of Signals

The essence of geometric representation of signals is to represent any set
of M energy signals {si (t)} as linear combinations of N orthonormal basis
functions, where N ≤ M.

si (t) =
N∑
j=1

sijφj(t), i = 1, 2, . . . ,M

where,

sij =

∫ T

0
si (t)φj(t)dt, i = 1, 2, . . . ,M, j = 1, 2, . . . ,N
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Geometric Representation of Signals

The real-valued basis functions φi (t) form an orthonormal set∫ T

0
φi (t)φj(t)dt = δij =

{
1 if i = j
0 if i 6= j
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Geometric Representation of Signals

A synthesizer and an analyzer:
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Geometric Representation of Signals

Accordingly, we may state that each signal in the set {si (t)} is completely
determined by the signal vector

si = [si1, si2, · · · , siN ]T , i = 1, 2 . . . ,M

si is a point in an N-dimensional Euclidean space which is called the signal
space.
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Geometric Representation of Signals

Length of a signal vector – norm: ‖si‖

‖si‖2 = sHi si =
N∑
j=1

|sij |2

The energy of a signal:

Ei =

∫ T

0
|si |2dt =

N∑
j=1

|sij |2 = ‖si‖2

The inner product of the energy signals si (t) and sk(t) over the interval
[0,T ] is equal to the inner product of their respective vector
representations si and sk :∫ T

0
s∗i (t)sk(t)dt = sHi sk
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Geometric Representation of Signals

Euclidean distance between two signal vectors:

‖si − sk‖2 =
N∑
j=1

(sij − skj)
2

The angle between two signal vectors:

cos(θik) =
sHi sk
‖si‖‖sk‖

Examples to read: (1) The Schwarz Inequality, (2) Gram-Schmidt
Orthogonalization Procedure
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Conversion of the Continuous AWGN Channel into a
Vector Channel

The received signal over AWGN channel:

x(t) = si (t) + w(t), i = 1, 2, . . . ,M

Using the “analyzer”, the output of the jth correlater:

xj =

∫ T

0
x(t)φj(t)dt = sij + wj , j = 1, 2, . . . ,N

where wj =
∫ T
0 w(t)φj(t)dt.

The received signal can be expressed as

x(t) =
N∑
j=1

xjφj(t) + w ′(t)

where w ′(t) = w(t)−
∑N

j=1 wjφj(t).
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Statistical Characterization of the Correlator Outputs

The output of the jth correlator is a Gaussian random variable Xj .
(j = 1, 2, . . . ,N)

µXj
= E[sij + Wj ] = sij + E[Wj ] = sij

σ2Xj
= var [Xj ] = E[W 2

j ] =
N0

2
, ∀j

where

Wj =

∫ T

0
W (t)φj(t)dt

cov [XjXk ] = 0, j 6= k
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Statistical Characterization of the Correlator Outputs

Define the vector of N random variables

X = [X1,X2, · · · ,XN ]T

whose elements are independent Gaussian random variables with mean
values equal to sij and variances equal to N0/2.

Conditional pdf of the vector X

fX(x|mi ) =
N∏
j=1

fXj
(xj |mi ), i = 1, 2, . . . ,M

where x is the observation vector and xj is an element of the observation
vector.
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Statistical Characterization of the Correlator Outputs

Since each Xj is a Gaussian random variable with mean sij and variance
N0/2, we have

fXj
(xj |mi ) =

1√
πN0

exp

(
− 1

N0
(xj − sij)

2

)

Therefore,

fX(x|mi ) = (πN0)−N/2 exp

− 1

N0

N∑
j=1

(xj − sij)
2


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Statistical Characterization of the Correlator Outputs

The remainder of the noise is irrelevant.

E[XjW
′] = 0, j = 1, 2, . . . ,N
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Statistical Characterization of the Correlator Outputs

The AWGN channel model is an N-dimensional vector channel

x = si + w, i = 1, 2, . . . ,M

where the dimension N is the number of basis functions involved in
formulating the signal vector si for all i .
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Likelihood Function

Likelihood function:
l(mi |x) = fX(x|mi )

The likelihood l(mi |x) is not a distribution; rather, it is a function of the
parameter mi , given x.

The log-likelihood function for an AWGN channel is

L(mi ) = ln l(mi ) = − 1

N0

N∑
j=1

(xj − sij)
2 , i = 1, 2, . . . ,M

where we have ignored the constant term −(N/2) ln(πN0) since it bears
no relation to the message symbol mi .
Recall that sij , j = 1, 2, . . . ,N, are the elements of the signal vector si
representing the message symbol mi .
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Optimum Receivers Using Coherent Detection

Maximum Likelihood Decoding

A bank of correlators:
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Optimum Receivers Using Coherent Detection

x = si + w
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Optimum Receivers Using Coherent Detection

Observation vector x lies in region Zi if (
∑N

j=1 xjskj −
1
2Ek) is maximum

for k = i , where Ek is transmitted energy.

Liang Dong (Baylor University) Signaling over AWGN Channels September 22, 2016 19 / 28



Correlation Receiver

(a) Detector
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Correlation Receiver

(b) Maximum-likelihood Decoder
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Matched Filter Receiver
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Probability of Error

Pe = 1− 1

M

M∑
i=1

∫
Zi

fX(x|mi )dx
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Probability of Error

Invariance of the Probability of Error to Rotation

If a message constellation is rotated by the transformation

si ,rotate = Qsi , i = 1, 2, . . . ,M

where Q is an orthonormal matrix, then the probability of symbol
error Pe incurred in maximum likelihood signal-detection over an
AWGN channel is completely unchanged.
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Illustration of Rotational Invariance
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Probability of Error

Invariance of the Probability to Translation

If a signal constellation is translated by a constant vector amount,

si ,translate = si − a, i = 1, 2, . . . ,M

then the probability of symbol error Pe incurred in maximum
likelihood signal detection over an AWGN channel is completely
unchanged.
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Illustration of Translation Invariance
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Union Bound on the Probability of Error

Union Bound

Pe(mi ) ≤
M∑

k=1,k 6=i

P(Aik), i = 1, 2, . . . ,M

Pairwise Error Probability

Pe(mi ) ≤
M∑

k=1,k 6=i

pik , i = 1, 2, . . . ,M

where pik is the pairwise error probability.
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