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Discriminative Models vs. Generative Models

Discriminative Model

* Classification: Given the features of an instance of data x ~ p;4:4 (%), it predicts a
label or category y to which that data belongs.

* The discriminative model learns a function that maps the input data x to some
output class label y.

* It learns the conditional distribution p(y|x).
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Discriminative Models vs. Generative Models

Generative Model

* Modeling Data Distribution: Given finite samples of the data distribution X = {x|x
~ Paata(2)}, it finds a model such that ppoder (X5 0) = Paata(X)-

* The generative model tries to learn the underlying structure of the input data and
can generate synthetic data.

* It learns the joint probability of the input data and label p(x, y).
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Autoencoder

INPUT LAYER OUTPUT LAYER

HIDDEN LAYER

OUTPUT OF THIS LAYER PROVIDES
REDUCED REPRESENTATION

Autoencoder can be used for learning generative models of data.
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Autoencoder

INPUT LAYER OUTPUT LAYER

QUTPUT OF THIS LAYER PROVIDES
REDUCED REPRESENTATION

An autoencoder has an output layer with the same dimensionality as the input.
The number of units in each middle layer is constricted. These units in the middle layer
hold a reduced representation of the data (dimensionality reduction).
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Autoencoder

INPUT LAYER OUTPUT LAYER

HIDDEN LAYER

OUTPUT OF THIS LAYER PROVIDE (==X
REDUCED REPRESENTATION )
code, latent variables,

or latent representations

The autoencoder learns to compress data from the input into a short code.
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Autoencoder

INPUT LAYER OUTPUT LA

5 QUTPUT OF THIS LAYER PROVIDES
REDUCED REPRESENTATION

Along with the reduction side, a reconstructing side is learnt. The autoencoder tries to
uncompress the code into something that closely matches the original data.
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Autoencoder as Generative Model

As close as possible

8 :
» Encoder » 8_ » Decoder »
: ®

Synthetic
Image

Randomly generate
a vector as code

» Decoder »

9poo
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Variational Autoencoder

Latent Variables z Output

Input x » Encoder » p, w? » Decoder » o’

Strong assumptions concerning the distribution of latent variables.

The prior over the latent variables is usually set to be the centered isotropic
multivariate Gaussian.

q(z|x) = N(p, w?I) , and the posterior distribution is p(x|z) = N(u, 621).
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Variational Autoencoder

Latent Variables z Output

Input x » Encoder » P, w? » Decoder » TN

The objective functionis Dk (q(z]x)||p(2)) — Eq(zjx)(ogp(x|2))

(Kullback-Leibler divergence)

However, this model only shows the mean of the distributions rather
than a sample of the learned Gaussian distribution.
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Variational Autoencoder Working on MNIST Dataset
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Variational Autoencoder Working on MNIST Dataset
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Autoencoder for Latent Space Modeling

Example of latent space interpolation

. » Encoder » E Zq
» Encoder »
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Autoencoder for Latent Space Modeling

Example of latent space interpolation

Zg =« + (1 — C() » Decoder »
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Denoising Autoencoder

DAE tries to undo the effect of corruption process stochastically applied to the input.

Encoder »E » Decoder ».2

Noisy Input X Denoised Output

X is a corrupted copy of x. x=g(f(x))

Minimization of the loss L(x, g(f (X))
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Denoising Autoencoder

DAE tries to undo the effect of corruption process stochastically applied to the input.

TR TR

Noisy Input X Denoised Output

X is a corrupted copy of x. x=g(fx)

The DAE forces the hidden layer to learn a generalized structure of the data, or
concentrates the data near a lower dimensional manifold.

Prof. Liang Dong, Baylor University

Convolutional Autoencoder

Input image Reconstructed image

Latent Space )
"~._ Representation Lo

y .

Encoder
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Convolutional Autoencoder

Input image

Reconstructed image

‘o Latent Space )
"~._ Representation o

Deconvolutional Layer: Using fractionally strided convolutions or
transposed convolutions at a fractional value, e.g., 0.5.
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Generative Adversarial Networks

Generative adversarial networks
(GANSs) are deep neural network
architectures comprised of two
networks, competing against each
other in a zero-sum

game framework.

Real Data X ——m—mm . . . Real /
> Discriminator _>Fake

c.f. Encoder

Noise Z — Generator — _ _ _ _ - Differentiable

c.f. Decoder lan Goodfellow, et al. “Generative Adversarial Nets”, Proc. Advances in

Neural Information Processing Systems, pp. 2672-2680, 2014
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Noise Z —> Generator —

Generative Adversarial Networks

Real Data X ——m .. . . Real /
> Discriminator _>Fake

c.f. Encoder

c.f. Decoder

One network, called

the generator, generates new
data instances, while the other,
the discriminator, evaluates them
for authenticity.

The discriminator decides
whether each instance of data
that it reviews belongs to the
actual training dataset or not.

Zis random noise and can be viewed as the latent representation of the data.
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Generative Adversarial Networks

The data distribution is x ~ pggea(x), x € X.

The generator G has a latent prior z ~ p,(z), z € Z and maps this to sample space

G:7Z - X.

G implicitly defines a distribution p,,0qe1(X; 05).

The discriminator D tells how real a sample looks viaascore D: X — R (It outputs a
single scalar — the prob that x comes from p44t4 rather than ppoder-)
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Generating Image

Training set

Random

with GANs

s
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Generator
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Fake image

Discriminator

Real
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Generating Image

Training set

Random
noise

with GANs

—

Generator
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Generating Image with GANs

Training set

Generator
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Discriminator
o,
L, Real
< -~ =
Fake image A deconvolutional neural

network
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Generating |mage Wlth GANs Both nets are trying to optimize a

different and opposing objective
function in a zero-sum game.

Their losses push against each other.
Training set l/ Discriminator
/ N
/ Real

Random

Generator
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Generating Image with GANs

The generator takes in a random noise vector and returns an image.

This synthetic image is fed into the discriminator alongside a stream of images taken
from the real image dataset.

The discriminator takes in both real and fake (synthetic) images and returns
probabilities, a number between 0 and 1, with 1 representing a prediction of
authenticity and 0 representing fake.
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GAN - “Robotic Artist”

https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
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Training Generative Adversarial Networks

Goal — Find a setting of parameters that makes generated data look like the training data
to the discriminator network.

Discriminator training - Backprop from a binary classification loss.

Generator training - Backprop the negation of the binary classification loss of the
discriminator.
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Training Generative Adversarial Networks

Alternately updating the parameters 8; and 8 of the generator G and the
discriminator D.

The discriminator is a neural network with d-dimensional inputs and a single output in
(0,1), which indicates the probability whether or not the d-dimensional input example
is real.

A value of 1 indicates that the example is real and a value of 0 indicates that the
example is fake (synthetic).

The objective for the discriminator is to correctly classify the real examples to a label of
1 and the synthetically generated examples to a label of 0.
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Training Generative Adversarial Networks

The generator takes noise samples from a p-dimensional probability distribution as
input and uses those to generate d-dimensional examples of the data.

The discriminator error is used to train the generator to create other samples like
coming from the real data distribution.

The objective for the generator is to generate examples so that they fool the
discriminator (i.e., encourage the discriminator to label such examples as 1).
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Training Discriminator

The objective function of the discriminator:

Jo= ) 10g[D@)]+ ) logll=D()]

XERm XESm

R, is the set of m randomly sampled examples from the real data set.

Sm is the set of m generated synthetic samples.

Maximization for the discriminator:
Maximizep Jp
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Training Generator
The objective function of the generator:

Jo= ) logll=D()] = ) log[l = DG())]

XESm ZENp,

N, is the set of m input samples {z,,}.

Minimization for the generator:
Minimize; /;
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Training Generative Adversarial Networks

This is a two-person zero-sum minimax game, which has an inner maximization by
D and an outer minimization by G.

min max V' (D, G)
G D

V(Da G) = ]E:cmpdam(:c) [log D(ﬂ?; OD)] + Ezwpz (z) [log(l - D(G(Za OG); QD))]
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Training Generative Adversarial Networks

Theoretical Results (given enough capacity and non-parametric)

For fixed G, the optimal discriminator D is

pdata(x)

D2 =
G(m) pdata,(x) + Pmodel (w; HG)

Prof. Liang Dong, Baylor University

35

Training Generative Adversarial Networks

Theoretical Results (given enough capacity and non-parametric)

Find the global minimum w.r.t G for the optimal discriminator D

Pdata Pmodel
C(G) = Egx~o aa[log ]—I—Emm” { }
( R Pdata + Pmodel SoimedEl Pdata + Pmodel

(1(1+ moae Cf/(l+ mode
_ —log(4)—|—KL<pdata Ddat 2p dl)"'KL(pmodel Tt 2p dl)

= - log(4) +@ ¢ JSD(pdata”pmodel)

The Jensen-Shannon divergence (JSD) between two distributions is non-negative and
zero iff the distributions are equal.

Therefore, the unique global minimum is C(G) = —log4 , when paata = Pmodel-
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Training Generative Adversarial Networks

Stochastic gradient ascent is used for learning the parameters 6 of the discriminator.
Stochastic gradient descent is used for learning the parameters 6, of the generator.
The gradient update steps are alternated between the generator and the discriminator.
k steps of optimizing D and one step of optimizing G

— To maintain D near its optimal solution while G changes slowly.
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Training Generative Adversarial Networks

At the discriminator:

* (Repeat k < 5 times): A mini-batch of size 2m is constructed with an equal number
of real and synthetic examples.

* Stochastic gradient ascent is performed on the parameters of the discriminator so as
the maximize the likelihood that the discriminator correctly classifies both the real
and synthetic examples.

* For each update step, performing backpropagation on the discriminator network
with respect to the mini-batch of 2m real/synthetic examples.

Prof. Liang Dong, Baylor University l 37
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Training Generative Adversarial Networks

At the Generator:

* Provide the generator with m noise inputs so as to create m synthetic examples
(current mini-batch).

* Stochastic gradient descent is performed on the parameters of the generator so as to
minimize the likelihood that the discriminator correctly classifies the synthetic
examples.

* Even though the discriminator is connected to the generator, the gradient updates
(during backpropagation) are performed with respect to the parameters of only the
generator network.
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Training Generative Adversarial Networks

This iterative process is repeated to convergence until Nash equilibrium is reached. At
this point, the discriminator will be unable to distinguish between the real and synthetic
examples.

The training of the generator and discriminator are done simultaneously with
interleaving.

The generator may produce poor samples in early iterations and therefore D (G (z)) will
be close to 0. In this case, we can train G to maximize log D(G(z)) instead of
minimizing log(1 — D(G(2))) during the early stages.

Prof. Liang Dong, Baylor University l 39
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GAN Compared to Variational Autoencoder

A GAN is not designed to reconstruct specific input samples like a variational AE.

However, both models can generate images like the base data, because the hidden
space has a known structure (typically Gaussian) from which points can be sampled.

In general, the GAN produces samples of better quality (e.g., less blurry images) than a
variational AE. This is because the adversarial approach is specifically designed to
produce realistic images, whereas the regularization of the variational AE actually hurts
the quality of the generated objects.

Prof. Liang Dong, Baylor University
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Major Problems of GANs

GANs do not naturally have a metric for convergence. Networks are difficult to
converge on large problems.

Ideally, all losses go to —log (%) ~ 0.69. But that usually does not happen in practice.

Generator and Discriminator reach some desired equilibrium but this is rare.
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Common Failure Cases

learning anything.

that fools the discriminator.
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Vanishing/Exploding gradients from the discriminator to the generator.

The discriminator becomes too strong too quickly and the generator ends up not

Mode Collapse — The generator learns only a very small subset of the true data
distribution. It produces only one mode of data distribution.

The generator learns very specific weaknesses of the discriminator. It produces garbage

Deep Convolutional GAN (DCGAN)

1024

4 \ 8
100z | = ——

= 8

Code Project and B ] Stride 2
shape econy

e Deconv 2

(Radford et al., 2015)
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Deconv 3

64

Deconv 4




Deep Convolutional GAN (DCGAN)

Fully connected layers are not used in either the discriminator or the generator.

Replace pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Batch normalization is used in order to reduce any problems with the vanishing and
exploding gradient problems.

The generator uses RelLU activation for all layers expect for the output (Tanh).

The discriminator uses a convolutional neural network architecture, except that the
leaky RelLU is used instead of the ReLU.

The final convolutional layer of the discriminator is flattened and fed into a single
sigmoid output.

Prof. Liang Dong, Baylor University
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Deep Convolutional GAN (DCGAN)

man man woman
with glasses without glasses without glasses

woman with glasses

Radford, Alec, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial
networks. 2015.
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Generated bedrooms. Source: “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”,
2016. https://arxiv.org/abs/1511.06434v2

Original CIFAR-10 vs. Generated CIFAR-10 samples
Source: “Improved Techniques for Training GANs”, 2016. https://arxiv.org/abs/1606.03498
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Conditional GAN

Conditional GAN
(Mirza & Osindero, 2014)

Idea: Leverage side information to produce better
quality or conditional samples.

In conditional GANs, both the generator and the
discriminator are conditioned on an additional
input, which can be a class label, a caption, or
D another object of the same type.
/ Force G to generate a particular type of output.

(Xreat da@) | ( Xjpake )

The generator learns side-information conditional
distributions, as it is able to disentangle this from
the overall latent space.

Prof. Liang Dong, Baylor University

Conditional GAN

Labels to Street Scene Labels to Facade BW to Color

tput
AerialtoMap "

output
Edges to Photo

input output

output
Image-to-Image Translation, pix2pix

Phillip Isola, et al. Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017.
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Conditional GAN

Reconstruction )
Initial Optimization Face Aging
Original by A 1

Reconstruction [ \
Pixelwise 0-18 19-29 30-39 40-49 50-59 60+

(a) (b) (c) (d)

Antipov, G., Baccouche, M., & Dugelay, J. L., Face Aging With Conditional Generative Adversarial Networks, 2017.
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Auxiliary Classifier GAN

Auxiliary Classifier GAN

S 0 Discriminator is tasked with jointly learning

real-vs-fake and the ability to reconstruct the
latent variable being passed in.

(086

(Xrea @ata)  (_ Xpake )
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Auxiliary Classifier GAN

The petals of the
flower are purple
with a yellow center
and have thin
filaments coming
from the petals.

This flower is white
and yellow in color,
with petals that are
oval shaped

Neise veeter Phase-| Phase-II

Ayushman Dash, et al. TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network, 2017.
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InfoGAN

z vector captures slight variations in the

Jake object.
c vector captures the main attributes of
the object.
(Koo ) (Kpake ) Want to maximize the mutual

information I between c and x = G(z, ¢).

Z (noise)

mén max V(D,G) — M (c;G(z,¢))

Chen, Xi, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. NIPS, 2016.
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InfoGAN

77
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(a) Varying ¢, on InfoGAN (Digit type) (b) Varying ¢, on regular GAN (No clear meaning)
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/
S84
333
Q9

9955555555515 55555555S5

(c) Varying c2 from =2 to 2 on InfoGAN (Rotation) (d) Varying cz from =2 to 2 on InfoGAN (Width)

Chen, Xi, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. NIPS, 2016.
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Variants of GANs

Vanilla GAN Discriminator Looks at Latent Variables Discriminator Predicts Latent Variables
Vanilla GAN Conditional GAN Bidirectional GAN Semi-Supervised GAN InfoGAN Auxiliary Classifier GAN
(Goodfellow, et al, 2014) (Mirza & Osindero, 2014) (Donahue, et al, 2016; Dumoulin, et al., 2016) (Odena, 2016; Salimans, et al,, 2016) (Chen, et al, 2016) (Odena, et al,, 2016)

) ) e,
ake
(Krea @) ( Xjake ) (Frea @) | ( Xyake ) (Kreat data) Xpare )

| A

o) |

Z_(hoise) class noise (2 _gatemy Z (atent) )
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Image Super-Resolution with GAN

bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dB/0.7777) (20.344B/0.6562)
~. > w - g — B

Fashion Recommendation and Design with GANs

Prototype Approximated Image
Optimization Process

(a) ! (b0} (b10} (b20) (b40) {50}

Find latent representation z that obtains the highest
recommendation score.

Kang et al., Visually-Aware Fashion Recommendation and Design
With GANs, 2017.
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Cycle GANs

Monet Y_ Photos ) Zebras  Horses Summer T Winter

horse —» zebra

Monet Van Gogh Cezanne

Photograph

Given two image collections, algorithm learns to translate an image from one collection to the other.

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017.
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orange — apple
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Photos
to Paintings

Paintings
to Photos
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Progressive Growing of GANs

G Latent Latent Latent
4 +
ax4 4x4 4x4
‘

—

[ 1024x1024 ]
i : :
. AR. - &
D | iReals : Reals

G iReaIs
[ 1024x1024 |
—
e
Y [ —
i —]
iy 8x8 (E—]
[ aa | 4x4

Training progresses ——————————»

Images are generated by walking through the latent space.

Karras, Tero, et al. Progressive growing of GANs for improved quality, stability, and variation. 2017.
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