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Discriminative Models vs. Generative Models

Discriminative Model

• Classification: Given the features of an instance of data 𝑥 ∼ 𝑝ௗ௔௧௔ 𝑥 , it predicts a
label or category 𝑦 to which that data belongs.

• The discriminative model learns a function that maps the input data 𝑥 to some
output class label 𝑦.

• It learns the conditional distribution 𝑝(𝑦|𝑥).
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Discriminative Models vs. Generative Models

Generative Model

• Modeling Data Distribution: Given finite samples of the data distribution 𝑋 = {𝑥|𝑥
∼ 𝑝ௗ௔௧௔ 𝑥 }, it finds a model such that 𝑝௠௢ௗ௘௟ 𝑥; 𝜃 ≈ 𝑝ௗ௔௧௔(𝑥).

• The generative model tries to learn the underlying structure of the input data and
can generate synthetic data.

• It learns the joint probability of the input data and label 𝑝(𝑥, 𝑦).
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Autoencoder

Autoencoder can be used for learning generative models of data.
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Autoencoder

An autoencoder has an output layer with the same dimensionality as the input. 
The number of units in each middle layer is constricted. These units in the middle layer 
hold a reduced representation of the data (dimensionality reduction).  
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Autoencoder

The autoencoder learns to compress data from the input into a short code.

code, latent variables, 
or latent representations
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Autoencoder

Along with the reduction side, a reconstructing side is learnt. The autoencoder tries to 
uncompress the code into something that closely matches the original data.
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Autoencoder as Generative Model

As close as possible

Encoder Decoder

co
d

e

Decoder
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Randomly generate 
a vector as code

Synthetic 
Image
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Variational Autoencoder

Encoder Decoder

Strong assumptions concerning the distribution of latent variables. 

The prior over the latent variables is usually set to be the centered isotropic 
multivariate Gaussian.

𝜌, 𝜔ଶ

Latent Variables 𝑧

Input 𝑥

Output

𝜇, 𝜎ଶ

𝑞 𝑧 𝑥 = 𝑁(𝜌, 𝜔ଶ𝐼) , and the posterior distribution is 𝑝 𝑥 𝑧 = 𝑁(𝜇, 𝜎ଶ𝐼).
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Variational Autoencoder

Encoder Decoder

The objective function is 

𝜌, 𝜔ଶ

Latent Variables 𝑧

Input 𝑥

Output

𝜇, 𝜎ଶ

𝐷௄௅ 𝑞 𝑧 𝑥 | 𝑝 𝑧 − 𝐸௤ 𝑧 𝑥 (log 𝑝 𝑥 𝑧 )

However, this model only shows the mean of the distributions rather 
than a sample of the learned Gaussian distribution.

(Kullback-Leibler divergence)
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Variational Autoencoder Working on MNIST Dataset

Learned MNIST manifold

Diederik P Kingma, Max Welling, Auto-Encoding 
Variational Bayes, 2014.  arXiv:1312.6114v10
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Variational Autoencoder Working on MNIST Dataset

1st epoch  9th epoch  original

12

Prof. Liang Dong, Baylor University

Autoencoder for Latent Space Modeling

Example of latent space interpolation

ଵ

ଶ

Encoder

Encoder
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Autoencoder for Latent Space Modeling

Example of latent space interpolation

Decoder

ଵ ଶ

ఈ
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Denoising Autoencoder

DAE tries to undo the effect of corruption process stochastically applied to the input.

Encoder Decoder

Noisy Input Denoised Output𝑥෤

𝑥ො = 𝑔(𝑓 𝑥෤ )

Minimization of the loss 𝐿(𝑥, 𝑔(𝑓 𝑥෤ )

𝑥෤ is a corrupted copy of 𝑥.
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Denoising Autoencoder

DAE tries to undo the effect of corruption process stochastically applied to the input.

Encoder Decoder

Noisy Input Denoised Output𝑥෤

𝑥ො = 𝑔(𝑓 𝑥෤ )

The DAE forces the hidden layer to learn a generalized structure of the data, or 
concentrates the data near a lower dimensional manifold.

𝑥෤ is a corrupted copy of 𝑥.
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Convolutional Autoencoder

Hidden Code

Encoder Decoder
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Convolutional Autoencoder

Deconvolutional Layer: Using fractionally strided convolutions or 
transposed convolutions at a fractional value, e.g., 0.5.
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Generative Adversarial Networks

Generative adversarial networks 
(GANs) are deep neural network 
architectures comprised of two 
networks, competing against each 
other in a zero-sum 
game framework. 

Discriminator

Generator

Real Data 𝑋

Noise 𝑍

Real /
Fake

c.f. Encoder

c.f. Decoder Ian Goodfellow, et al. “Generative Adversarial Nets”, Proc. Advances in 
Neural Information Processing Systems, pp. 2672-2680, 2014

Differentiable
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Generative Adversarial Networks

One network, called 
the generator, generates new 
data instances, while the other, 
the discriminator, evaluates them 
for authenticity.

The discriminator decides 
whether each instance of data 
that it reviews belongs to the 
actual training dataset or not.

Discriminator

Generator

Real Data 𝑋

Noise 𝑍

Real /
Fake

c.f. Encoder

c.f. Decoder

Z is random noise and can be viewed as the latent representation of the data.
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Generative Adversarial Networks

The data distribution is 𝑥 ∼ 𝑝ௗ௔௧௔ 𝑥 , 𝑥 ∈ 𝑋.

The generator 𝐺 has a latent prior 𝑧 ∼ 𝑝௭ 𝑧 , 𝑧 ∈ 𝑍 and maps this to sample space 
𝐺: 𝑍 → 𝑋.

𝐺 implicitly defines a distribution 𝑝௠௢ௗ௘௟(𝑥; 𝜃ீ).

The discriminator 𝐷 tells how real a sample looks via a score 𝐷: 𝑋 → (It outputs a 
single scalar – the prob that 𝑥 comes from 𝑝ௗ௔௧௔ rather than 𝑝௠௢ௗ௘௟.)
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Generating Image with GANs
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Generating Image with GANs
A standard CNN and a 
binomial classifier
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Generating Image with GANs

A deconvolutional neural 
network

24

Prof. Liang Dong, Baylor University

Generating Image with GANs Both nets are trying to optimize a 
different and opposing objective 
function in a zero-sum game. 

Their losses push against each other.

25

24

25



Prof. Liang Dong, Baylor University

Generating Image with GANs

The generator takes in a random noise vector and returns an image.

This synthetic image is fed into the discriminator alongside a stream of images taken 
from the real image dataset.

The discriminator takes in both real and fake (synthetic) images and returns 
probabilities, a number between 0 and 1, with 1 representing a prediction of 
authenticity and 0 representing fake.
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GAN - “Robotic Artist”

https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
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Training Generative Adversarial Networks

Goal – Find a setting of parameters that makes generated data look like the training data 
to the discriminator network.

Discriminator training - Backprop from a binary classification loss.

Generator training - Backprop the negation of the binary classification loss of the 
discriminator.
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Training Generative Adversarial Networks

Alternately updating the parameters 𝜃ீ and 𝜃஽ of the generator 𝐺 and the 
discriminator 𝐷.

The discriminator is a neural network with d-dimensional inputs and a single output in 
(0, 1), which indicates the probability whether or not the d-dimensional input example 
is real. 

A value of 1 indicates that the example is real and a value of 0 indicates that the 
example is fake (synthetic). 

The objective for the discriminator is to correctly classify the real examples to a label of 
1 and the synthetically generated examples to a label of 0.
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Training Generative Adversarial Networks

The generator takes noise samples from a p-dimensional probability distribution as 
input and uses those to generate d-dimensional examples of the data. 

The discriminator error is used to train the generator to create other samples like 
coming from the real data distribution.

The objective for the generator is to generate examples so that they fool the 
discriminator (i.e., encourage the discriminator to label such examples as 1). 
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Training Discriminator

The objective function of the discriminator: 

𝐽஽ = ෍ log [𝐷 𝑥 ]

௫∈ோ೘

+ ෍ log[1 − 𝐷 𝑥 ]

௫∈ௌ೘

𝑅௠ is the set of 𝑚 randomly sampled examples from the real data set.

𝑆௠ is the set of 𝑚 generated synthetic samples.

Maximization for the discriminator: 
 Maximize஽ 𝐽஽
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Training Generator

The objective function of the generator: 

𝐽ீ = ෍ log[1 − 𝐷 𝑥 ]

௫∈ௌ೘

= ෍ log[1 − 𝐷 𝐺(𝑧) ]

௭∈ே೘

𝑁௠ is the set of 𝑚 input samples {𝑧௠}.

Minimization for the generator: 
 Minimizeீ 𝐽ீ
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Training Generative Adversarial Networks

This is a two-person zero-sum minimax game, which has an inner maximization by 
𝐷 and an outer minimization by 𝐺.
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Training Generative Adversarial Networks

Theoretical Results (given enough capacity and non-parametric)

For fixed 𝐺, the optimal discriminator 𝐷 is 
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Training Generative Adversarial Networks

Theoretical Results (given enough capacity and non-parametric)

Find the global minimum w.r.t 𝐺 for the optimal discriminator 𝐷

The Jensen-Shannon divergence (JSD) between two distributions is non-negative and 
zero iff the distributions are equal.

Therefore, the unique global minimum is 𝐶 𝐺 = − log 4 , when 𝑝ௗ௔௧௔ = 𝑝௠௢ௗ௘௟.
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Training Generative Adversarial Networks

Stochastic gradient ascent is used for learning the parameters 𝜃஽ of the discriminator.

Stochastic gradient descent is used for learning the parameters 𝜃ீ of the generator.

The gradient update steps are alternated between the generator and the discriminator. 

𝑘 steps of optimizing 𝐷 and one step of optimizing 𝐺

– To maintain 𝐷 near its optimal solution while 𝐺 changes slowly.
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Training Generative Adversarial Networks

At the discriminator:

• (Repeat 𝑘 < 5 times): A mini-batch of size 2𝑚 is constructed with an equal number
of real and synthetic examples.

• Stochastic gradient ascent is performed on the parameters of the discriminator so as
the maximize the likelihood that the discriminator correctly classifies both the real
and synthetic examples.

• For each update step, performing backpropagation on the discriminator network
with respect to the mini-batch of 2𝑚 real/synthetic examples.
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Training Generative Adversarial Networks

At the Generator:

• Provide the generator with 𝑚 noise inputs so as to create 𝑚 synthetic examples
(current mini-batch).

• Stochastic gradient descent is performed on the parameters of the generator so as to
minimize the likelihood that the discriminator correctly classifies the synthetic
examples.

• Even though the discriminator is connected to the generator, the gradient updates
(during backpropagation) are performed with respect to the parameters of only the
generator network.
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Training Generative Adversarial Networks

This iterative process is repeated to convergence until Nash equilibrium is reached.  At 
this point, the discriminator will be unable to distinguish between the real and synthetic 
examples.

The training of the generator and discriminator are done simultaneously with 
interleaving.

The generator may produce poor samples in early iterations and therefore 𝐷(𝐺(𝑧)) will 
be close to 0.  In this case, we can train 𝐺 to maximize log 𝐷(𝐺(𝑧)) instead of 
minimizing log(1 − 𝐷 𝐺(𝑧) ) during the early stages.
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GAN Compared to Variational Autoencoder

A GAN is not designed to reconstruct specific input samples like a variational AE.

However, both models can generate images like the base data, because the hidden 
space has a known structure (typically Gaussian) from which points can be sampled.

In general, the GAN produces samples of better quality (e.g., less blurry images) than a 
variational AE.  This is because the adversarial approach is specifically designed to 
produce realistic images, whereas the regularization of the variational AE actually hurts 
the quality of the generated objects.
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Major Problems of GANs

GANs do not naturally have a metric for convergence.  Networks are difficult to 
converge on large problems.

Ideally, all losses go to −log
ଵ

ଶ
≈ 0.69. But that usually does not happen in practice.

Generator and Discriminator reach some desired equilibrium but this is rare.
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Common Failure Cases

The discriminator becomes too strong too quickly and the generator ends up not 
learning anything.

Mode Collapse – The generator learns only a very small subset of the true data 
distribution.  It produces only one mode of data distribution.

Vanishing/Exploding gradients from the discriminator to the generator.

The generator learns very specific weaknesses of the discriminator.  It produces garbage 
that fools the discriminator.
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Deep Convolutional GAN (DCGAN)

(Radford et al., 2015)
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Deep Convolutional GAN (DCGAN)

Fully connected layers are not used in either the discriminator or the generator. 

Replace pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Batch normalization is used in order to reduce any problems with the vanishing and 
exploding gradient problems.

The generator uses ReLU activation for all layers expect for the output (Tanh).

The discriminator uses a convolutional neural network architecture, except that the 
leaky ReLU is used instead of the ReLU. 

The final convolutional layer of the discriminator is flattened and fed into a single 
sigmoid output.  
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Deep Convolutional GAN (DCGAN)

Radford, Alec, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial 
networks. 2015.
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Generated bedrooms. Source: “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, 
2016. https://arxiv.org/abs/1511.06434v2
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Original CIFAR-10 vs. Generated CIFAR-10 samples 
Source: “Improved Techniques for Training GANs”, 2016. https://arxiv.org/abs/1606.03498
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Conditional GAN

Idea: Leverage side information to produce better 
quality or conditional samples.

In conditional GANs, both the generator and the 
discriminator are conditioned on an additional 
input, which can be a class label, a caption, or 
another object of the same type.

Force 𝐺 to generate a particular type of output.

The generator learns side-information conditional 
distributions, as it is able to disentangle this from 
the overall latent space.
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Conditional GAN

Image-to-Image Translation,  pix2pix

Phillip Isola, et al. Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017.
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Conditional GAN

Antipov, G., Baccouche, M., & Dugelay, J. L., Face Aging With Conditional Generative Adversarial Networks, 2017.
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Auxiliary Classifier GAN

Discriminator is tasked with jointly learning 
real-vs-fake and the ability to reconstruct the 
latent variable being passed in.
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Auxiliary Classifier GAN

Ayushman Dash, et al. TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network, 2017.
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InfoGAN

𝑧 vector captures slight variations in the 
object.

𝑐 vector captures the main attributes of 
the object.

Want to maximize the mutual 
information 𝐼 between 𝑐 and 𝑥 = 𝐺(𝑧, 𝑐).

Chen, Xi, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. NIPS, 2016.
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InfoGAN

Chen, Xi, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. NIPS, 2016.
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Variants of GANs
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Image Super-Resolution with GAN

Ledig, Christian, et al. Photo-realistic single image super-resolution using a generative adversarial network. CVPR 2016.
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Fashion Recommendation and Design with GANs

Find latent representation 𝑧 that obtains the highest 
recommendation score.

Kang et al., Visually-Aware Fashion Recommendation and Design 
With GANs, 2017.
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Cycle GANs

Given two image collections, algorithm learns to translate an image from one collection to the other.

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017.
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Cycle GANs
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Photos
to Paintings
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Paintings
to Photos
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Progressive Growing of GANs

Images are generated by walking through the latent space.

Karras, Tero, et al. Progressive growing of GANs for improved quality, stability, and variation. 2017.
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