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[from the EDITOR]
Abdelhak Zoubir

Editor-in-Chief 
zoubir@spg.tu-darmstadt.de

http://signalprocessingsociety.org/
publications/periodicals/spm 

T
he year 2013 marks the loss of 
two pioneers in audio signal 
processing who were, at some 
point, members of the IEEE 
Signal Processing Society; 

Amar Gopal Bose died 12 July 2013 at the 
age of 83. His name is now identified with 
the high-quality audio equipment, such as 
speakers and noise-canceling headphones, 
that his company has been manufacturing 
for nearly 50 years. Ray Milton Dolby, 
whose name is synonymous with home 
sound systems and cinema, died 12 Sep-
tember 2013 at the age of 80.

Dr. Bose studied electrical engineering 
at the Massachusetts Institute of Technol-
ogy (MIT) under Norbert Wiener, along 
with Dr. Y.W. Lee. He returned to MIT as a 
professor in 1956 and was a member of its 
faculty until 2001. Primarily known for his 
work on audio signal processing and 
acoustics and for the successful company 
he set up to pursue long-term research in 
acoustics, Dr. Bose also performed 
research on nonlinear control theory, 
which led to an electromagnetic active 
control suspension for automobiles, a 
product in today’s market. He received, 
respectively, in 1972 and 2010, his IEEE 
Fellowship and the IEEE/RSE Wolfson 
James Clerk Maxwell Award. 

Dr. Dolby graduated in electrical engi-
neering from Stanford University in 1957 
and completed his Ph.D. in physics at 
Cambridge University in 1965. Dolby was 
best known for his work in noise reduc-
tion of audio recordings and surround 
sound. He received his IEEE Fellowship in 
2010 and, in the same year, the IEEE Edi-
son Medal.

Bose and Dolby are prime examples 
of successful research engineers whose 

innovations have spawned successful 
industrial products and have had an 
impact on our daily lives. The question 
one wishes to answer is “What made 
their success possible?” Is it the con-
duct of high-risk research that led to a 
big return? Or did other factors also 
play a key role in their successes?

There exist many success stories in 
engineering and science; a wealth of liter-
ature on the greatest ideas, the greatest 
feuds; and on discovery, creativity, and 
innovation, written by engineers or scien-
tists, but also by sociologists. Many of us 
have read some of these books and the fas-
cinating stories they recount. I recall a dis-
cussion on the history of science I had at a 
dinner table with colleagues and friends 
during the International Conference on 
Acoustics, Speech, and Signal Processing 
(ICASSP) in Atlanta. I don’t recall how the 
discussion started, but I very well remem-
ber that at some point we discussed the 
discovery of the number and numerical 
digit “zero” (0). The discussion was both 
entertaining and exciting. The number 
that plays a central role in mathematics 
and seems obvious today was not easy to 
conceptualize, and now several books exist 
on the history of its discovery.

About two years ago, I read an interest-
ing book by Simonton [1] who examined 
scientific creativity from four principal 
perspectives. These are logic, genius, 
chance, and Zeitgeist. Simonton poses the 
question whether creativity is assured 
once a scientist masters the logic of sci-
ence and the substance of a particular dis-
cipline. Clearly, this would contradict the 
idolizing praise, bestowed on scientific 
genius. Joseph Louis Lagrange called Isaac 
Newton “the greatest genius that had ever 
existed” while Albert Einstein reported “to 
these elementary laws there leads no logi-
cal path, but only intuition.” Not all of us 

would accept the limitations of the logic 
stance. Arguably, great scientists don’t fol-
low logic. Then, there is chance. Many 
known episodes of serendipity, which is 
defined as the faculty of making fortunate 
discoveries by accident, exist. Louis Pas-
teur said, “chance favors only the prepared 
mind.” According to a dictionary, Zeitgeist
is the defining spirit (Geist) or mood of a 
particular period of history as shown by 
the ideas and beliefs of the time (Zeit). The 
above four viewpoints are incoherent  
except for the logic and the Zeitgeist. They 
are more independent than mutually sup-
portive, which is not surprising [1].

Coming back to Bose and Dolby, it is 
reported that Dolby worked at an audio-
recording company as a teenager while Dr. 
Bose began repairing radio sets for pocket 
money for repair shops in Philadelphia at 
the age of 13. This is an indication of their 
passion to engineering practice from an 
early age. This passion is what drives 
many of us to do research and strive for 
the advancement of technology with nov-
elties, even when it means taking risks. In 
a 2004 interview in Popular Science mag-
azine, Bose said “I would have been fired a 
hundred times at a company run by 
M.B.A.s. But I never went into business to 
make money. I went into business so that 
I could do interesting things that hadn’t 
been done before.” 

Conducting interesting research and 
being passionate about what we do is what 
keeps us motivated and is likely to lead to 
innovation with a high impact to society.   

REFERENCE
[1] D. K. Simonton, Creativity in Science: Chance, 
Logic, Genius, and Zeitgeist. Cambridge, U.K.: Cam-
bridge Univ. Press, 2004.
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K.J. Ray Liu 
2012–2013 SPS President

kjrliu@umd.edu

A Lasting Journey

few years ago, I was asked by 
my university’s president to 

join a reception honoring 
some dignitaries from 

another country.  A 
woman who appeared to be of nobility 
asked me what type of work I do. 

“Signal processing,” I said. Her eyes lit 
up with excitement and said that the traf-
fic signals near her home were operating 
strangely and asked if I could perhaps offer 
my expertise.  Not knowing how to 
respond, I pretended to be busy eating 
my soup…

After the 2008 International Confer-
ence on Acoustics, Speech, and Signal 
Processing ended in Las Vegas, I was one 
of the last to leave since I stayed for the 
Board of Governors meeting immedi-
ately after. On my way to the airport, the 
taxi driver asked me if I was in town for 
the game. 

I responded simply, “No, for a confer-
ence.” The driver replied, “For the sig-
nal processing conference?” I was quite 
impressed that he was aware of our field! 
When asked how he knew, the driver 
replied that he had taken quite a few 
attendees to the airport, and they told him 
what signal processing is about.

So the world is not that hopeless. Since 
I raised the “signal processing inside” phe-
nomenon [1] in 2004, however, it seems 
that signal processing is still quite inside. 
Over the past decade there has been an 
overwhelming feeling of powerlessness in 
terms of how/where to address this visibil-
ity issue that is unique to our field.

When I was a member of the IEEE 
Technical Activities Board, more than 40 

presidents of Societies and/or councils 
would gather and often remark how sig-
nal processing is ubiquitous when we were 
working together. Our field of interest as 
officially approved by that body is defined 
by this opening statement: “Signal pro-
cessing is the enabling technology for the 
generation, transformation, extraction, 
and interpretation of information.” 

If you were to refer to this statement 
among your colleagues in engineering, or 
even science, they would most likely know 
what you are talking about. 

Nevertheless, when we go beyond our 
comfort zone, signal processing becomes 
an unknown. So who is to speak for us? Is 
it important for “the public” to know more 
about us? 

Well, of course! Otherwise the field 
may not receive the recognition and influ-
ence it deserves, as well as the research 
funding to accompany. But the visibility 
of our field is certainly about more than 
sheer pride and ego.

The taxi driver knew about signal pro-
cessing because people had repeatedly 
talked to him about it. I would bet that if 
the lady of nobility had been exposed to 
or heard of signal processing a couple of 
times, she would have instead asked me to 
fix her TV or cell phone, both better propo-
sitions than the traffic signals…

As a result, the IEEE Signal Processing 
Society (SPS) Executive Committee has 
decided to face this daunting issue again 
by establishing an ad hoc committee that 
will work with John Cozzens of the U.S. 
National Science Foundation. I hope that 
we can at least have a starting point for us 
to work toward developing a concrete plan 
in the near future.

Over the past few years, the SPS has 
changed significantly and grown a lot. It 

has been my honor and privilege to work 
with so many dedicated colleagues who 
offer their unselfish volunteer time and 
effort to make our Society better. There 
are so many people to thank, and I would 
definitely miss some names if I tried to 
name them all. Please allow me to say 
“Thank you so much!” to all of you.

It has been my pleasure and good for-
tune to have had the opportunity to work 
with the incoming SPS President Alex 
Acero over many years. As an outstand-
ing researcher and experienced industry 
leader, Alex is ready to move the Society to 
a higher level. I wish him and the Society 
all the best! 

I would like to thank all of the SPS 
staff, especially Rich Baseil and Theresa 
Argiropoulos. The last two years were 
perhaps the most difficult time for our 
office due to a severe shortage of man-
power. But under their amazing leader-
ship, not only did the staff manage to 
provide outstanding services but they 
also made the quality of member ser-
vices a new priority. 

I would also like to thank Tracy Chung 
for helping to proofread every draft of my 
message in an effort to make the reading 
more enjoyable.

And so a chapter is over, yet another is 
about to begin. It is time for an old soldier 
to fade away. But the journey continues…

REFERENCE
[1] K. J. R. Liu, “Signal processing inside?” IEEE 
Signal Process. Mag., vol. 21, no. 5, p. 2, Sept. 2004.
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Top Downloads in IEEE Xplore

T
he “Reader’s Choice” col-
umn in IEEE Signal Pro-
cessing Magazine contains 
a list of articles published 
by the IEEE Signal Pro-

cessing Society (SPS) that ranked 

among the top 100 most downloaded 
IEEE Xplore articles. This issue is 
based on download data through 
August 2013. The table below contains 
the citation information for each arti-
cle and the rank obtained in IEEE 

Xplore. The highest rank obtained by 
an article in this time frame is indi-
cated in bold. Your suggestions and 
comments are welcome and should be 
sent to Associate Editor Michael 
Gormish (gormish@ieee.org).

TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100  
(2013)

N TIMES
IN TOP 100 
(SINCE JAN
2011)AUG JUL JUN MAY APR MAR

A TUTORIAL ON PARTICLE FILTERS FOR
ONLINE NONLINEAR/NON-GAUSSIAN
BAYESIAN TRACKING
Arulampalam, M.S.; Maskell, S.;
Gordon, N.; Clapp, T.
IEEE Transactions on Signal Processing
vol. 50, no. 2, 2002, pp. 174–188

This paper reviews optimal and 
suboptimal Bayesian algorithms for 
nonlinear/non-Gaussian tracking 
problems, with a focus on particle filters. 
Variants of the particle filter are 
introduced within a framework of the 
sequential importance sampling (SIS) 
algorithm and compared with the 
standard EKF.

4 4 2 4 11 81 29

IMAGE PROCESSING USING SMOOTH
ORDERING OF ITS PATCHES 
Ram, I.; Elad, M.; Cohen, I. 
IEEE Transactions on Image Processing
vol. 22, no. 7, 2013, pp. 2764–2774

This paper extracts overlapping image 
patches, orders these patches and 
applies one dimensional filtering to the 
reordered set of pixels. These techniques 
are applied to denoising and inpainting.

9 15 99 3

AN INTRODUCTION TO COMPRESSIVE
SAMPLING
Candes, E.J.; Wakin, M.B.
IEEE Signal Processing Magazine
vol. 25, no. 2, Mar. 2008, pp. 21–30

This article surveys the theory of 
compressive sampling, also known as 
compressed sensing or CS, a novel 
sensing/sampling paradigm that goes 
against the common wisdom in data 
acquisition.

13 19 5 6 7 31

PRIVACY PRESERVING DATA SHARING
WITH ANONYMOUS ID ASSIGNMENT  
Dunning, L.A.; Kresman, R.
IEEE Transactions on Information Forensics 
and Security
vol. 8, no. 2, 2013, pp. 402–413

Existing and new algorithms for 
assigning anonymous IDs are examined 
with respect to communication and 
computational requirements. The new 
algorithms are built on top of a secure 
sum data mining operation using 
Newton’s identities and Sturm’s theorem.

23 81 2

IMAGE QUALITY ASSESSMENT: FROM
ERROR VISIBILITY TO STRUCTURAL
SIMILARITY
Wang, Z; Bovik, A.C.; Sheikh, H.R.; 
Simoncelli, E.P.
IEEE Transactions on Image Processing  
vol. 13, no. 4, 2004, pp. 600–612

This paper introduces a framework for 
quality assessment based on the 
degradation of structural information. 
Within this framework a structure 
similarity index is developed and 
evaluated. MATLAB code available.

38 30 50 38 33 69 11
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TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100  
(2013)

N TIMES
IN TOP 100 
(SINCE JAN
2011)AUG JUL JUN MAY APR MAR

LEARNING-BASED, AUTOMATIC
2D-TO-3D IMAGE AND VIDEO
CONVERSION
Konrad, J.; Wang, M.; Ishwar, P.; 
Wu, C.; Mukherjee, D.
IEEE Transactions on Image Processing
vol. 22, no. 9, 2013, pp. 3485–3496

This paper uses respositories of true 
three-dimensional (3-D) data to learn 
conversion of two-dimensional (2-D) to 
3-D data. One method learns a point 
mapping based on image/video 
attributes including color, position, and 
motion using regression. A second 
method globally estimates the depth 
map using a nearest neighbor technique.

64 1

COMPRESSIVE SENSING [LECTURE NOTES]  
Baraniuk, R.G. 
IEEE Signal Processing Magazine
vol. 24, no. 4, 2007, pp. 118–121

This lecture note presents a new method 
to capture and represent compressible 
signals at a rate significantly below the 
Nyquist rate. This method, called 
compressive sensing, employs 
nonadaptive linear projections that 
preserve the structure of the signal; the 
signal is then reconstructed from these 
projections using an optimization 
process.

71 94 5

IMAGE SUPER-RESOLUTION VIA SPARSE
REPRESENTATION
Yang, J.; Wright, J.; Huang, T.S.; Ma, Y.
IEEE Transactions on Image Processing
vol. 19, no. 11, 2010, pp. 2861–2873

This paper presents an approach to 
single-image superresolution, based 
upon sparse signal representation of low- 
and high-resolution patches.

82 68 3

ADAPTIVE MOBILE CLOUD
COMPUTING TO ENABLE RICH
MOBILE MULTIMEDIA APPLICATIONS 
Wang, S.; Dey, S.
IEEE Transactions on Multimedia
vol. 15, no. 4, 2013, pp. 870–883

Mobile cloud computing can help 
bridge the gap between PCs and mobile 
devices, providing mobile applications 
the capabilities of cloud servers and 
storage, possibly enabling a new 
generation of truly ubiquitous 
multimedia applications on mobile 
devices: cloud mobile media (CMM) 
applications.

48 1

MULTI-VIEW VIDEO REPRESENTATION
BASED ON FAST MONTE CARLO
SURFACE RECONSTRUCTION 
Salvador, J.; Casas, J.R. 
IEEE Transactions on Image Processing 
vol. 22, no. 9, 2013, pp. 3342–3352

A Monte Carlo discrete surface 
reconstruction method for foreground 
objects with static background is 
presented, which outperforms 
volumetric techniques and is suitable 
for GPU environments. Then, a fast 
meshing algorithm is applied, which 
allows interpolating a continuous 
surface from the discrete reconstructed 
points.

53 1

[SP]
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[society NEWS]

New Members-at-Large, Directors-at-Large, 
and Class of Distinguished Lecturers for 2014

T
he Board of Governors (BoG) 
is the governing body that 
oversees the activities of the 
IEEE Signal Processing 
Society (SPS). The SPS BoG 

has the responsibility of establishing and 
implementing policy and receiving 
reports from its standing boards and com-
mittees. Members-at-large represent the 
member view point in the Board decision 
making. They typically review, discuss, 
and act upon a wide range of items affect-
ing the actions, activities, and health of 
the Society. 

MEMBERS-AT-LARGE ELECTION
Three new members-at-large will take 
their seats on the SPS BoG beginning 1 
January 2014 and will serve until 31 
December 2016. Eight candidates com-
peted for the three member-at-large posi-
tions. The successful candidates represent 
a broad spectrum of the SPS. The BoG 
will confirm the election results at their 6 
December 2013 Board meeting. The 
successful candidates are Geert Leus 
(Delft University of Technology), Helen 
Meng (Chinese University of Hong Kong),  
and Fernando Pereira (Instituto de 
Telecomunicacoes).

Completing their terms as members-
at-large on 31 December 2013 are Petar M. 
Djuric (Stony Brook University), William 
Clem Karl (Boston University), and 
Sergios Theodoridis (University of Athens).

REGIONAL DIRECTORS-AT-LARGE 
ELECTION RESULTS
Two new regional directors-at-large will 
take their seats on the SPS BoG and 
Membership Board beginning 1 January 
2014 and will serve until 31 December 

2015. Regional directors-at-large promote 
and foster local activities (such as confer-
ences, meetings, and social networking) 
and encourage new Chapter development; 
represent their Regions to the core of 
SPS; offer advice to improve membership 
relations, recruiting and service to their 
regions; guide and work with their corre-
sponding Chapters to serve their mem-
bers; and assist the vice president, Awards 
and Membership, in conducting Chapter 
reviews. The new regional directors-at-
large are as follows: 

■ Regions 7 and 9 :  Douglas 
O’Shaughnessy, INRS
■ Region 10: Hong-Yuan Mark Liao, 
Institute of Information Science.
Completing their terms as region-

al directors-at-Large on 31 December 
2013 are

■ Regions 7 and 9: Roxana Saint-
Nom, Instituto Tecnologico de Buenos 
Aires 
■ Region 10: Ta-Sung Lee, National 
Chiao Tung University.

2014 MEMBERS-AT-LARGE 

GEERT LEUS
Geert Leus received the electrical engi-
neering degree and the Ph.D. degree in 
applied sciences from the Katholieke 
Universiteit Leuven, Belgium, in 1996 and 
2000, respectively. Currently, he is a full 
professor at the Faculty of Electrical 
Engineering, Mathematics, and Computer 
Science of the Delft University of Tech-
nology, The Netherlands. In 2001 and 
2002, he was a visiting researcher and lec-
turer at the University of Minnesota. His 
research interests are in the broad area of 
signal processing for communications, 
with a special focus on underwater com-
munications, localization, and sensor net-
works. In this area, he has approximately 

80 journal and 190 conference publica-
tions, most of them in IEEE flagship jour-
nals and conferences. For his outstanding 
work, he received a 2002 IEEE SPS Young 
Author Best Paper Award and a 2005 IEEE 
SPS Best Paper Award.

Prof. Leus is an IEEE Fellow. His 
IEEE and Society activities include: mem-
ber, vice chair, chair, and past chair, SPS 
Signal Processing for Communications 
and Networking Technical Committee 
(2002–2011); member, SPS Sensor Array 
and Multichannel Technical Committee 
(2012–present); general and technical 
cochair, 2009 IEEE Workshop on Signal 
Processing Advances in Wireless 
Communications; technical cochair, 2012 
IEEE Workshop on Signal Processing 
Advances in Wireless Communications; 
technical program committee member of 
over 30 IEEE-sponsored conferences; 
organizer of special sessions at IEEE 
International Conference on Acoustics, 
Speech, and Signal Processing (ICASSP), 
Asilomar, IEEE Workshop on Compu-
tational Advances in Multisensor Adap-
tive Processing (CAMSAP), and IEEE 
International Conference on Ultra-
Wideband (ICUWB); associate editor, 
IEEE Transactions on Signal Processing 
(2006–2010), IEEE Transactions on 
Wireless Communications (2002–2006) 
and IEEE Signal Processing Letters 
(2001–2005); and guest editor, “Soft 
Detection for Wireless Transmission,” 
IEEE Journal of Selected Topics in Signal 
Processing (2011). Other volunteer activi-
ties include: editor-in-chief, EURASIP 
Journal on Advances in Signal Processing 
(2013–present); associate editor, EURASIP 
Journal on Advances in Signal Processing 
(2004–2012); guest editor, “Object 
Tracking and Monitoring Using Advanced 
Signal Processing Techniques,” EURASIP 
Journal on Advances in Signal Processing 

Digital Object Identifier 10.1109/MSP.2013.2282089

Date of publication: 5 December 2013

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [11] JANUARY 2014

(2011); lead guest editor, “Reliable 
Communications over Rapidly Time-
Varying Channels,” EURASIP Journal on 
Advances in Signal Processing (2006); 
lead guest editor, “Improved CDMA 
Detection Techniques for Future Wireless 
Systems,” EURASIP Journal on Advances 
in Signal Processing (2005); guest editor, 
“Interference Management in Wireless 
Communication Systems: Theory and 
Applications,” EURASIP Journal on 
Wireless Communications & Networking 
(2011); and guest editor, “Compressive 
Sensing in Communications,” Elsevier 
Physical Communications (2011) and 
advisory board member Campus do Mar 
(2010–present).

HELEN MENG
Helen Meng received the S.B., S.M., and 
Ph.D. degrees, all in electrical engineering, 
from the Massachusetts Institute of Tech-
nology, Cambridge. She joined The Chi-
nese University of Hong Kong (CUHK) in 
1998, where she is currently a professor 
and chair of the Department of Systems 
Engineering and Engineering Man-
agement. In 1999, she established the 
Human–Computer Communications Lab-
oratory and serves as its director. In 2005, 
she established the Microsoft–CUHK Joint 
Laboratory for Human–Centric Comput-
ing and Interface Technologies and serves 
as its founding director. This laboratory 
was conferred the national status of the 
Ministry of Education of China Key Labo-
ratory in 2008. She also served as associate 
dean (research) of the Faculty of Engi-
neering from 2006 to 2010. She is a Fel-
low of the IEEE. 

FERNANDO PEREIRA
Fernando Pereira graduated with a 
degree in electrical and computer engi-
neering from Instituto Superior Técnico 
(IST), Universidade Técnica de Lisboa, 
Portugal, in 1985. He received the M.Sc. 
and Ph.D. degrees in electrical and com-
puter engineering from IST in 1988 and 
1991, respectively. 

He is currently a professor in the 
Electrical and Computer Engineering 
Department at IST. He is responsible for 
IST’s participation in many national and 
international research projects. He acts 

as project evaluator and auditor for vari-
ous organizations.

Prof. Pereira is an IEEE and EURA-
SIP Fellow. He has been involved in the 
following professional activities: area 
editor, Signal Processing: Image Com-
munication Journal; editorial board 
member, IEEE Signal Processing Maga-
zine (2007–present); associate editor, 
IEEE Transactions of Circuits and 
Systems for Video Technology, IEEE 
Transactions on Image Processing
(2002–2007), IEEE Transactions on 
Multimedia and IEEE Signal Processing 
Magazine; member, SPS Image, Video, 
and Multidimensional Signal Processing 
Technical Committee (2004–2009), Mul-
timedia Signal Processing Technical 
Committee (2006–present), CAS Visual 
Signal Processing and Communications 
Technical Committee, and Multimedia 
Systems and Applications Technical 
Committee; and SPS Distinguished Lec-
turer (2005). Since January 2013, he has 
been the editor-in-chief of IEEE Journal 
of Selected Topics in Signal Processing.

He is and has been a member of the 
scientific and program committees of 
many international conferences. Among 
others, he has been the general chair, 
2007 Picture Coding Symposium (PCS), 
and Technical Program cochair, 2010 
International Conference on Image 
Processing (ICIP). He participates in the 
MPEG standardization activities, notably 
as the head of the Portuguese delegation; 
chair of the MPEG Requirements Group; 
and chair of many ad hoc groups related 
to the MPEG-4 and MPEG-7 standards. He 
is a coeditor of The MPEG-4 Book and The 
MPEG-21 Book.

Prof. Pereira won the first Portuguese 
IBM Scientific Award in 1990, an ISO 
Award for Outstanding Technical Contri-
bution for his contributions to the 
MPEG-4 Visual Standard in 1998, and an 
Honorable Mention of the UTL/Santander 
Totta Award for Electrotechnical Engi-
neering in 2009, 2010, 2011, and 2012. He 
won the “Excellent Professor” Award from 
the Electrical and Computer Engineering 
Department of IST in 2010, 2011, and 
2012. He has contributed more than 200 
papers in international journals, confer-
ences, and workshops and gave several 

invited talks at conferences and work-
shops. His areas of interest are video anal-
ysis, coding, description and adaptation, 
and advanced multimedia services.

REGIONAL DIRECTORS-AT-LARGE

DOUGLAS O’SHAUGHNESSY
Douglas O’Shaughnessy received the 
B.Sc. and M.Sc. degrees in 1972 and 
the Ph.D. degree in 1976 from the 
Massachusetts Institute of Technology, 
Cambridge. He has been a professor at 
INRS-Telecommunications (University of 
Quebec) in Montreal, Canada, since 1977 
(the institute was renamed INRS-EMT in 
2002). For this same period, he also 
taught as an adjunct professor at McGill 
University in the Department of Electrical 
Engineering. From 1991 to 1997 and 
2002–present, he has been the program 
director at INRS-EMT. Dr. O’Shaughnessy 
has been a teacher and researcher in the 
speech communication field for 36 years. 
His interests include automatic speech 
analysis, enhancement, and recognition. 
His research team is currently working to 
improve various aspects of automatic 
voice dialogues. 

He is a Fellow of the IEEE (2006) and 
the Acoustical Society of America (1992). 
He is a current member and chair, SPS 
Speech and Language Processing Techni-
cal Committee (1984–1985, 2007–2009, 
and 2011–2014); associate editor, IEEE 
Signal Processing Magazine (2009–2013); 
member, Technical Activities Board (TAB) 
Periodicals Committee (2011–2013); Acous-
tical Society of America: associate editor of 
Journal of the Acoustical Society of Amer-
ica Express Letters (2009–2013); Interna-
tional Speech Communication Association 
(ISCA): vice president and elected mem-
ber of the ISCA board (2009–2013); asso-
ciate editor, EURASIP Journal on 
Advances in Signal Processing (2008–
2013); editor-in-chief, EURASIP Journal 
on Audio, Speech, and Music Processing 
(2005–2013); member, Technical Com-
mittee on Speech of the Acoustical Soci-
ety of America (1995–1997); associate 
editor, IEEE Transactions on Speech 
and Audio Processing (1995–1999), 
Journal of Acoustical Society of America 
(1998–2010); member, SPS conference 
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[society NEWS]continued

board (2000–2005); member-at-large, 
SPS BoG (2002–2004); and general 
chair, 2004 ICASSP.

He is the author of Speech Communi-
cations: Human and Machine (IEEE 
Press, 2000). He is coauthor, with Li Deng, 
of Speech Processing: A Dynamic and 
Optimization-Oriented Approach (Marcel 
Dekker, 2003). He presented tutorials on 
speech recognition at ICASSP in 1996, 
2001, and 2009, as well as the 2003 IEEE 
International Conference on Communica-
tions (ICC). He has been a regular pre-
senter at the major speech conferences of 
Eurospeech and ICSLP (now Interspeech) 
and has had papers at virtually every 
ICASSP since 1986. In IEEE Xplore, he 
has 128 listings, on Google Scholar, 25 
publications of more than 25 citations.

HONG-YUAN MARK LIAO
Hong-Yuan Mark Liao received his B.S. 
degree in physics from National Tsing-
Hua University, Hsin-Chu, Taiwan, in 1981 
and his M.S. and Ph.D. degrees in electri-
cal engineering from Northwestern 
University in 1985 and 1990, respectively. 
In 1991, he joined the Institute of 
Information Science, Academia Sinica, 
Taiwan, where he is currently a distin-
guished research fellow. During 2009–
2011, he was the division chair of the 
Computer Science and Information 
Engineering Division II, National Science 
Council of Taiwan. He is jointly appointed 
as a professor of the Computer Science 
and Information Engineering Department 
of National Chiao-Tung University and the 
Department of Electrical Engineering of 
National Cheng Kung University. During 
2009–2012, he was jointly appointed as 
the multimedia information chair profes-
sor of National Chung Hsing University. 
Since 2010, he has been an adjunct 
chair professor of Chung Yuan Christian 
University. His current research interests 
include multimedia signal processing, 
video-based surveillance systems, video 
forensics, and multimedia protection.

Dr. Liao is a Fellow of the IEEE. He is 
the recipient of the Young Investigators’ 
Award from Academia Sinica in 1998, 
Distinguished Research Award from the 
National Science Council of Taiwan in 
2003 and 2010, National Invention Award 

of Taiwan in 2004, Distinguished Scholar 
Research Project Award from National 
Science Council of Taiwan in 2008, and 
Academia Sinica Investigator Award in 
2010. His professional activities include: 
cochair, 2004 International Conference on 
Multimedia and Exposition (ICME); tech-
nical cochair, 2007 ICME; general cochair, 
17th International Conference on 
Multimedia Modeling; President, Image 
Processing, and Pattern Recognition 
Society of Taiwan (2006–2008); editorial 
board member, IEEE Signal Processing 
Magazine; associate editor, IEEE 
Transactions on Image Processing, IEEE 
Transactions on Information Forensics 
and Security (2009–2012) and IEEE 
Transactions on Multimedia (1998–2001).

2014 CLASS OF DISTINGUISHED
LECTURERS
The IEEE SPS’s Distinguished Lecturer 
Program provides the means for 
Chapters to have access to well-known 
educators and authors in the fields of 
signal processing to lecture at Chapter 
meetings.  While many IEEE Societies 
have similar programs, the SPS provides 
financial support for the Chapters to take 
advantage of this service. Chapters inter-
ested in arranging lectures by the 
Distinguished Lecturers can obtain 
information from the Society’s Web page 
(http://www.signalprocessingsociety.org/
lecturers/distinguished-lecturers/) or by 
sending an e-mail to sp.info@ieee.org.

Candidates for the Distinguished 
Lecturer Program are solicited from the 
Society technical committees, editorial 
boards, Chapters, and other boards and 
committees by the Awards Board. The 
Awards Board vets the nominations, and 
the BoG approves the final selection.  
Distinguished Lecturers are appointed 
for a term of two calendar years. The 
following Distinguished Lecturers were 
named for 2014: Maria S. Greco, Alex C. 
Kot, Bhaskar D. Rao, Andrew C. Singer, 
and Akihiko (Ken) Sugiyama. 

MARIA S. GRECO
Maria S. Greco graduated in electronic 
engineering in 1993 and received the 
Ph.D. degree in telecommunication 
engineering from the University of Pisa, 

Italy, in 1998. From December 1997 to 
May 1998, she was with the Georgia Tech 
Research Institute, Atlanta, as a visiting 
research scholar, where she carried on 
research activity in the field of radar detec-
tion in non-Gaussian background. In 1993, 
she joined the Department of Information 
Engineering of the University of Pisa, 
where she has been an associate professor 
since December 2011. 

Dr. Greco has been a general chair, 
technical chair, and organizing commit-
tee member of the 2006 European Signal 
Processing Conference, the 2007 Inter-
national Waveform Diversity and Design 
Conference, the 2008 IEEE Radar Con-
ference, IEEE Workshop on Computa-
tional Advances in Multisensor Adaptive 
Processing (2009 and 2011), the 2010 In-
ternational Workshop on Cognitive Infor-
mation Processing, the 2014 IEEE Sensor 
Array and Multichannel Signal Processing 
Workshop, and ICASSP 2014. She was a 
guest coeditor of the special issue “Adap-
tive Waveform Design for Agile Sensing 
and Communication” (June 2007), IEEE 
Journal of Selected Topics in Signal Pro-
cessing, and lead guest editor of the special 
issue “Modeling and Processing of Radar 
Signals for Earth Observation” (August 
2008) of International Journal of Naviga-
tion and Observation.

Dr. Greco has been an associate editor, 
IET Proceedings—Sonar, Radar, and Navi-
gation since 2009; IEEE Transactions on 
Signal Processing (2009–2013); associate 
editor-in-chief, IEEE Aerospace and Elec-
tronic Systems Magazine since 2011; edi-
torial board member, Journal of Advances 
in Signal Processing since 2008; member, 
IEEE SPS Signal Processing Theory and 
Methods Technical Committee (2009–pres-
ent); chair, EDU Subcommittee (2009–
2014); member, IEEE SPS Sensor Array 
and Multichannel Technical Committee 
(2010–2015); and member, IEEE Aero-
space and Electronic Systems Society 
(AESS) Radar Panel and IEEE AESS BoG 
(2012–2014).

She is an IEEE Fellow. She was co-
recipient, IEEE AESS’s Barry Carlton 
Award for Best Paper (2001); and recipi-
ent, Fred Nathanson Young Engineer 
of the Year Award (2008) “for contribu-
tions to signal processing, estimation, 
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and detection theory.” Dr. Greco’s gen-
eral interests are in the areas of sta-
tistical signal processing, estimation, 
and detection theory. In particular, her 
research interests include radar clutter 
models, spectral analysis, coherent and 
incoherent detection in non-Gaussian 
clutter, constant false alarm rate tech-
niques, radar waveform diversity and 
bistatic/multistatic radars. She coau-
thored three book chapters and more 
than 130 journal and conference papers.

Dr. Greco’s lecture topics include  
statistical analysis methods for radar 
clutter modeling, advanced techniques 
of radar detection in non-Gaussian 
background, and sensor selection for 
multistatic radar networks.

ALEX C. KOT
Alex C. Kot received his B.S. degree in 
electrical engineering and M.B.A. degrees 
both from the University of Rochester. He 
obtained his M.S. and Ph.D. degrees in 
electrical engineering from the University 
of Rhode Island.  Prof. Kot has been with 
the Nanyang Technological University, 
Singapore since 1991. He headed the Divi-
sion of Information Engineering with 
more than 40 faculty members at the 
School of Electrical and Electronic Engi-
neering for eight years and served as 
associate chair/research and vice dean 
research for the School of Electrical and 
Electronic Engineering. He is currently a 
professor and associate dean in the Col-
lege of Engineering. He is the director of 
the Rapid-Rich Object Search (ROSE) Lab, 
which partners with Peking University.  

Dr. Kot was an associate editor, 
IEEE Transactions on Signal Processing
(2001–2003); IEEE Transactions on Image 
Processing (2010–2012); IEEE Transactions
on Multimedia (2008–2012); IEEE Signal 
Processing Letters (2009–2012); IEEE 
Signal Processing Magazine (2008–2010); 
IEEE Journal of the Special Topics in Sig-
nal Processing (2010–2012); IEEE Trans-
actions on Circuits and Systems for Video 
Technology; IEEE Transactions on Cir-
cuits and Systems Part I/II; IEEE Trans-
actions on Information, Forensics, and 
Security (2011–present); and the EURASIP 
Journal of Advanced Signal Processing. He 
was also a guest editor for special issues of 

IEEE Transactions on Circuits and Sys-
tems for Video Technology and IEEE Jour-
nal of Applied Signal Processing.

He has served the IEEE SPS in various 
capacities such as general cochair, ICIP 
2004 and chair, SPS Chapters Committee. 
He served as member, IEEE Fellow Evalu-
ation Committee; vice president, finance, 
IEEE SPS (2013–2014); member, SPS 
Conference Board (2013–2014); and mem-
ber, SPS Publications Board (2013–2014). 
He received the Best Teacher of the Year 
Award and received Best Paper Awards 
as coauthor from the International Con-
ference on Pattern Recognition, IEEE 
International Workshop on Information 
Forensics and Security, International 
Conference on Electronic Commerce, and 
International Workshop on Digital Water-
marking. He was the IEEE Circuits and 
Systems Society Distinguished Lecturer 
in 2005 and 2006 and is a Fellow of the 
IEEE, IES, and the Academy of Engineer-
ing, Singapore. 

Dr. Kot has published extensively 
in the areas of signal processing for 
communication, biometrics, data hid-
ing, image forensics, and information 
security. His new research area is in 
the domain object search and recogni-
tion. His lecture topics include “Is Your 
Biometric Data Safe?” and “Can Digital 
Photos Be Trusted?”

BHASKAR D. RAO
Bhaskar D. Rao received the B.Tech. 
degree in electronics and electrical com-
munication engineering from the Indian 
Institute of Technology, Kharagpur, India, 
in 1979 and the M.S. and Ph.D. degrees 
from the University of Southern Califor-
nia, Los Angeles, in 1981 and 1983, 
respectively.  Since 1983, he has been with 
the University of California at San Diego, 
La Jolla, where he is currently a professor 
with the Department of Electrical and 
Computer Engineering. He holds the 
Ericsson Endowed Chair in Wireless 
Access Networks and was the director of 
the Center for Wireless Communications 
(2008–2011). 

Prof. Rao was elected IEEE Fellow in 
2000 “for his contributions to the statis-
tical analysis of subspace algorithms for 
harmonic retrieval.” His work has received 

several paper awards; Best Paper Award 
(2013) for “Multicell Random Beamform-
ing with CDF-Based Scheduling:  Exact 
Rate and Scaling Laws”; SPS Best Paper 
Award (2012) for “An Empirical Bayesian 
Strategy for Solving the Simultaneous 
Sparse Approximation Problem”; Stephen 
O. Rice Prize Paper Award in the Field of 
Communication Systems (2008) for “Net-
work Duality for Multiuser MIMO Beam-
forming Networks and Applications”;  and 
Best Paper Award (2000) for “PDF Opti-
mized Parametric Vector Quantization of 
Speech Line Spectral Frequencies.” 

His students have received several stu-
dent paper awards; Best Student Paper 
Award (2006) for D.P. Wipf for the paper 
“Analysis of Empirical Bayesian Methods 
for Neuroelectromagnetic Source Local-
ization,” by D.P. Wipf, R.R. Ramirez, J.A. 
Palmer, S. Makeig, and B.D. Rao; Stu-
dent Paper Award (2006) for Jun Zheng 
for the paper “Capacity Analysis of Mul-
tiple Antenna Systems with Mismatched 
Channel Quantization Schemes,” by J. 
Zheng and B.D. Rao; Best Student Paper 
Award (2005) for J. McCall and D. Wipf for 
the paper “Lane Change Intent Analysis 
Using Robust Operators and Sparse Bayes-
ian Learning” by J. McCall, D. Wipf. M. 
Trivedi and B.D. Rao; and Student Paper 
Award (2005) for Haichang Sui for the 
paper “RAKE Finger Placement for CDMA 
Downlink Equalization,” by H. Sui, E. 
Masry and B.D. Rao.

Prof. Rao has been a member, Statisti-
cal Signal and Array Processing Technical 
Committee; member, Signal Processing 
Theory and Methods Technical Commit-
tee (1999–2004); Signal Processing for 
Communications and Networking Techni-
cal Committee (2005–2007); member, 
Machine Learning for Signal Processing 
Technical Committee (2012–present); edi-
torial board member, EURASIP Signal 
Processing Journal; and technical mem-
ber, several IEEE conferences.

Prof. Rao’s interests are in the areas 
of digital signal processing, estimation 
theory, and optimization theory, with 
applications to digital communications, 
speech signal processing, and biomedical 
signal processing.

Prof. Rao’s lecture topics include  
“Bayesian Methods for Sparse Signal 
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Recovery and Compressed Sensing and 
Space-Time Signal Processing” and 
“Theory, Methods, and Applications.” 

ANDREW C. SINGER
Andrew C. Singer received the S.B., S.M., 
and Ph.D. degrees, all in electrical engi-
neering and computer science, from the 
Massachusetts Institute of Technology. 
From 1996 to 1998, he was a research sci-
entist at Sanders, a Lockheed Martin 
company in Manchester, New Hampshire. 
Since 1998, he has been on the faculty of 
the Department of Electrical and Com-
puter Engineering at the University of Illi-
nois at Urbana-Champaign, where he is 
currently a professor in the Electrical and 
Computer Engineering Department and 
the Coordinated Science Laboratory.  

In 2000, Dr. Singer cofounded Inter-
symbol Communications, Inc., based 
in Champaign, Illinois, which built 
the world’s fastest signal-processing-
enhanced receivers for 10 Gb/s optical 
communications. In 2007, Intersymbol 
Communications, Inc. was acquired by 
Finisar Corporation (FNSR). He con-
tinues to work in areas related to signal 
processing algorithms and their poten-
tial to enhance mixed-signal analog and 
digital circuits both in his research and 
as assistant director of the SRC-funded 
Systems on Nanoscale Information 
Fabrics (SONIC) center. His research 
interests include signal processing and 
communication systems.

He received the National Science Foun-
dation CAREER Award (2000), the Xerox 
Faculty Research Award (2001), and was 
named a Willett Faculty Scholar (2002). In 
2005, he was appointed director, Technol-
ogy Entrepreneur Center at the University 
of Illinois. He received the IEEE Journal 
of Solid State Circuits Best Paper Award 
(2006) and the IEEE Signal Processing 
Magazine Award (2008).  He was selected 
for participation in National Academy of 
Engineering, “Frontiers of Engineering” 
symposium in 2008, and in 2009, he was 
elected Fellow of the IEEE “for contribu-
tions to signal processing techniques for 
digital communication.”

Dr. Singer is currently the IEEE SPS 
liaison to computing in science and engi-
neering. He has been a member of the 

Massachusetts Institute of Technology 
Educational Council since 1994. He has 
served two terms as associate editor, IEEE 
Transactions on Signal Processing (2002–
2006); guest editor-in-chief, Special Issue 
on Machine Learning Methods in Signal 
Processing, IEEE Transactions on Signal 
Processing (2004); guest associate editor, 
Special Issue on Facets of Coding Theory: 
From Algorithms to Networks, IEEE Trans-
actions on Information Theory (2010); 
guest editor-in-chief, Special Issue on Soft 
Detection for Wireless Transmission, IEEE 
Journal on Special Topics in Signal Pro-
cessing (2011); member, Signal Processing 
Theory and Methods Technical Committee 
(2004–2011); and member, IEEE Machine 
Learning for Signal Processing Technical 
Committee (2007–2012).

Dr. Singer’s lecture topics include 
“Statistical Learning in Signal Process-
ing, “Hybrid Signal Processing and Com-
munication Systems,” “DSP Applications: 
Underwater Acoustic Signal Processing 
and Communication,” “DSP to the Rescue 
of Moore’s Law,” and “Signal Processing-
Based Technology Entrepreneurship.”

AKIHIKO (KEN) SUGIYAMA
Akihiko (Ken) Sugiyama is a research fel-
low of Information and Media Processing 
Laboratories at NEC Corporation, Tokyo, 
Japan. He received his B.E., M.E., and Dr.
Eng. degrees all in electrical engineering 
from Tokyo Metropolitan University, Japan, 
in 1979, 1981, and 1998, respectively. He 
joined NEC Corporation in 1981 and has 
been engaged in research and develop-
ment of signal processing algorithms and 
systems for transmission terminals and 
consumer products such as trunk switch-
ing systems, subscriber-loop transmission 
systems, remote conference systems, per-
sonal computers, cellphone handsets, 
speech/audio codecs, voice recorders, digi-
tal still cameras, camcorders, and related 
digital signal processor software. 

He was a visiting scientist at the Depart-
ment of Electrical and Computer Engi-
neering, Concordia University, Montreal, 
Canada (1987–1988), and served as a doc-
toral research supervisor at Traitement du 
Signal et Télécommunications, Université 
de Rennes 1, Rennes, France (1996–1998 
and 2003–2006), and a part-time lecturer at 

Tokyo Institute of Technology (2002–2009), 
Tokyo Metropolitan University (2004, 2006, 
and 2007), Keio University (2008), Tokyo 
Agriculture and Technology University 
(2008–2013), Kyoto University (2009), and 
Niigata University (2010), all in Japan. 

Dr. Sugiyama was elected IEEE Fel-
low in 2011 “for contributions to speech 
and audio signal processing” and has 
served as member, Audio and Acoustic 
Signal Processing (formerly Audio and 
Electroacoustics) Technical Commit-
tee (1990–2009), vice chair (2010) and 
chair (2011–2012); conference board as 
a member (2005–2007) and the secre-
tary and member-at-large (2009–2010); 
Industrial Relations Committee as a 
member (2011–present); and the orga-
nization committees of the 2001 IEEE 
ICASSP as the far-East liaison and a tech-
nical program chair of ICASSP 2012 as 
well as the 2012 IEEE International Con-
ference on Emerging Signal Processing 
Applications (ESPA) as the tutorial chair. 
He was the vice chair (2007–2008) and 
the chair (2009–2010) of the Japan Chap-
ter, IEEE SPS, and an associate editor of 
IEEE Transactions on Signal Processing
(1994–1996) and is currently the vice 
chair of the Chapter Operations Commit-
tee, IEEE Japan Council (2013–present). 

Dr. Sugiyama was elevated to Fellow of 
the Institute of Electronics, Information, 
and Communication Engineers (IEICE), 
a Japan-based society to cover signal pro-
cessing, in 2011 “for contributions to 
audio and acoustic signal processing.” He 
has served the Signal Processing Tech-
nology Group (formerly Technical Group 
on Digital Signal Processing), Engineer-
ing Science Society, IEICE, as an associ-
ate secretary (1994–1995), a secretary 
(1995–1997), a vice chair (2007–2008), and 
the chair (2009) as well as the Profitability 
Improvement Committee, IEICE Engi-
neering Science Committee as a member 
(2000–2001).  He was the director, Service 
Activities, IEICE Engineering Sciences 
Society (2000–2002). He has been the local 
liaison officer for Japan of the EURASIP 
Administration Committee (2009–pres-
ent). He was an associate editor of Cir-
cuits, Systems and Signal Processing,

(continued on page 21)
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Fresh Approaches Promise Wireless Quality 
and Reliability Improvements

ith wireless tech-
nology providing 

the foundation for a 
rapidly growing num-

ber of consumer, busi-
ness, and government applications, 
researchers worldwide are focusing on 
ways of resolving long-standing wireless 
quality and reliability issues.

Getting wireless applications to work 
better is not a simple or easy task. Net-
work quality and reliability hinges on 
many different factors, including trans-
mission technology, user device, signal 
strength, interference and terrain. Yet 
none of these concerns mean anything to 
the vast majority of wireless users, who 
simply expect their data, voice, and video 
applications to work efficiently and 
consistently. 

With wireless use projected to sky-
rocket over the next few years, researchers 
realize that there’s a pressing need for 
innovations that will ensure high-quality 
wireless links within an increasingly 
crowded spectrum. “There’s a momentum 
building for systems that ‘just work’ and 
that require no effort from the user to 
maintain an optimal connection,” says 
Kang Shin, a University of Michigan com-
puter science professor and wireless net-
work traffic management researcher. 
“Enhancing reliability is essential for 
ensuring wireless’ continued growth.”

“For wireless to fulfill its promise in 
the years ahead, users need to be confi-
dent in the quality and reliability of their 
applications,” notes Shivendra S. Panwar, 
a Polytechnic Institute of New York Uni-
versity electrical and computer engineer-
ing professor who investigates video 

streaming quality technologies (Figure 1). 
“This is certainly not the case today.”

BETTER MOBILE VIDEO
With mobile video now challenging the 
dominance of conventional over-the-air 
and cable television broadcasting, 
researchers are looking for ways of ensur-
ing that wireless content delivery systems 
offer quality and reliability that at least 
equals their predecessors.

A new architecture designed to support 
higher-quality video over wireless net-
works developed by Finland’s VTT Techni-
cal Research Centre utilizes information 
collected from the video application, net-
work, and mobile phone to optimize con-
tent quality. The approach allows video 
stream transfer speeds to be efficiently 
adjusted in accordance with available net-
work resources, ensuring that quality will 
not fall below an acceptable level, even 
when the network connection’s transfer 
speed suddenly drops due to congestion.

The problem with existing adaptive 
video streaming systems, according to Tiia 
Ojanperä, a senior scientist at VTT, is a 
lack of sufficient control over both video 
streaming and terminal mobility. “Current 
mobility protocols, such as mobile IP 
(MIP), base their handover decisions on 
limited information that doesn’t reflect 
the actual transmission conditions in the 
networks,” she says. “Such protocols also 
fail to take into account any application-
specific requirements.”

Current protocols also hide mobility 
from the upper layers, making it impossi-
ble for quality of service (QoS)-sensitive 
applications, such as video streaming, to 
adapt to vertical handovers. Existing appli-
cation layer video adaptation solutions, 
including those based on the TCP Friendly 
Rate Control (TFRC), also have difficulties 
in operating over network paths with 

wireless links due to their reliance on lim-
ited end-to-end feedback signaling. “The 
current solutions and protocols for mobile 
video streaming can lead to increased con-
gestion and unnecessary data transmis-
sions,” Ojanperä says.

A cross-layer design, such as the type 
developed by VTT, “allows the user, net-
work operator or service provider to influ-
ence the delivery of video services on the 
Internet, and especially in wireless net-
works, for improved video service avail-
ability and quality as well as fair 
distribution of network resources,” Ojan-
perä says. “For example, linking the video 
stream bit rate efficiently to the available 
network capacity helps ensure a better 
functioning service in comparison to a sit-
uation where video data is randomly 
dropped due to congestion.”

When the adaptation is done in a con-
trolled manner, only the perceived video 
fidelity varies and the user can continue 
using the service despite network capacity 
changes, Ojanperä says. “In addition, since 
the proposed solution enables efficient use 
of multiple access networks, the delivery 
of the video service can be improved by 
the means of optimized handovers and 
simultaneous usage of multiple access 
networks.” For instance, if the currently 
used network connection is incapable of 
supporting the QoS demands of the video 
service, it is possible to transfer the video 
stream reception to a better network or 
one may use multiple network connec-
tions simultaneously for added capacity.

There are other benefits as well, Ojan-
perä says. “For example, if a user is forced 
to stream a video using a network connec-
tion that is expensive to use or has limited 
capacity, the user can choose to only 
receive an adapted, poorer-quality version 
of the stream via that connection. If a 
more affordable network becomes available 
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during streaming, the architecture auto-
matically switches to that network to give 
the user access to a high-quality version of 
the stream.”

VTT is continuing to refine the archi-
tecture, Ojanperä says. “We are currently 
focusing on video bit rate adaptation, 
handover management, and access net-
work load balancing actions in the 
attempt to optimize the video quality and 
network resource usage.”

SPLITTING VIDEO 
INTO DUAL STREAMS
Panwar and his fellow researchers at the 
Polytechnic Institute of New York Univer-
sity have addressed the issue of poor-qual-
ity wireless video streaming by developing 
a new technique they call streamloading.
The approach relies on an video format 
that splits the streaming video into a pair 
of layers—a base layer that contains a 
rough video representation, and an 
enhancement layer that supplies the vid-
eo’s finer details. 

While conventional video streaming 
applications work to ensure service quality 
with a 30- to 60-s content buffer, stream-
loading operates in the background, pre-
downloading a content offering’s 
enhancement layer onto the user’s device 
in any location where a strong, fast wire-
less connection can be found, such as a 
home or office. This leaves only the 
smaller base layer to be streamed at the 
time of viewing, which may be a location 
offering only a slow or poor-quality wire-
less link.

Panwar estimates that the technique 
could remove as much as 75% of stream-
ing content from increasingly overloaded 
cellular wireless networks while simulta-
neously slashing consumers’ high data 
usage charges. “Streamloading offers a 
‘win’ for consumers in both quality and 
cost,” Panwar says.

Although users will be downloading 
and saving copyrighted content on their 
devices, Panwar maintains that stream-
loading is compatible with existing digital 
rights management protocols. Intellectual 
property owners have nothing to fear from 
the technology, Panwar says, since only a 
single layer of content—which is impossi-
ble to watch without the accompanying 
layer—is actually being stored on the 
user’s device. “There’s no way that stream-
loading could be used to pirate content,” 
Panwar says.

The researchers are continuing to test 
and refine the technology. Meanwhile, 
Panwar says discussions about potential 
applications are already being discussed 
with several wireless carriers, Panwar says.

BOOSTING AD HOC NETWORK 
RELIABILITY
Ad hoc wireless networks, widely used for 
sensor networks and emergency and mili-
tary communications, are designed to be 
highly reliable under both ordinary and 

adverse conditions. Yet this isn’t always 
the case in actual deployments. Research-
ers at the Massachusetts Institute of Tech-
nology (MIT) and Georgetown University 
are working to make ad hoc networks 
more usable and reliable with a new 
framework and algorithm that are 

designed to allow such networks to 
achieve maximal efficiency.

“When it comes to wireless ad hoc 
networks, there’s long been a wide gap 
between theory and reality,” says Cal 
Newport, an assistant professor of com-
puter science at Georgetown University 
(Figure 2). “Theoretical algorithms tend 
to be unrealistic and not suitable for the 
real world.”

“There’s been a discrepancy between 
the theory, with its idealized models, and 
the reality of wireless networks,” says 
Nancy Lynch, the NEC professor of soft-
ware science and engineering at MIT and 
head of the Theory of Distributed Systems 
Group, in a statement released by the 
school. “When people start designing the-
oretical algorithms, they tend to rely too 
heavily on the specific assumptions of the 
models. So the algorithms tend to be 
unrealistic and fragile.”

Newport notes that the models theore-
ticians use to design algorithms for ad 
hoc networks have straightforward de-
signs. “Because real networks are com-
plex, the models we use to design 
algorithms for them need to be more 
complex,” Newport says.

To bring anticipated ad hoc wireless 
network performance closer to reality, the 
researchers set out to create a new model 
that would better represent real-world sce-
narios. As they began their work, they 
decided to tap into the potential of ran-
domness. “In modeling wireless networks 
we should use more uncertainty,” New-
port states.

Newport notes that earlier researchers 
focused their network link reliability mod-
els on random fluctuations. Yet these 
efforts failed to deliver accurate real world 
results, Newport says. The team tried 
another approach: modeling quality fluc-
tuations as the intentional actions of an 
artificial adversary. Such an entity isn’t 
able to maintain control over all network 
links, and some will remain up through-
out the execution of the communication 
algorithm. Yet the adversary is also able to 
alter the bandwidth of other network con-
nections at will, and the network designer 
has no way of knowing beforehand which 
links are likely to be reliable and which 
will fail.

[FIG2] Cal Newport, of Georgetown 
University, is looking to boost ad hoc 
network reliability. (Photo courtesy of 
Georgetown University.)

[FIG1] Shivendra S. Panwar of the 
Polytechnic Institute of New York
University is addressing poor quality 
wireless video streaming with a new 
technique called streamloading. (Photo 
courtesy of the Polytechnic Institute of 
New York University.)
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“An algorithm must work for all poten-
tial adversaries, some of which are harm-
less and some of which are not,” Newport 
says. “A successful algorithm must be able 
to cope with all possible strategies for con-
trolling the network.”

As they started their project, the 
researchers created an adversary that 
understands how the communications 
algorithm works and has the ability to try 
defeating it. To achieve victory, however, 
the adversary would have to be able to 
determine a pattern of link manipulations 
in advance, before the algorithm even 
starts running. The adversary the 
researchers developed had the potential to 
be much more disruptive than the types of 
interference that real-world wireless net-
works are likely to encounter.

The researchers next examined two 
kinds of message dissemination. In the 
first type—a single network node trying 
to broadcast a message to all other 
nodes—they discovered that efficient 
communication is possible, even in the 
adversary’s presence. In the second 
case—with several nodes each transmit-
ting messages, and every one of their 
immediate neighbors required to receive 
a message from at least one transmit-
ter—turned out to be more problematic.

In the second scenario, the research-
ers discovered that the adversary’s pres-
ence has the potential to derail efficient 
communication, yet only if the network 
has an odd shape in which a central node 
is connected to many nearby nodes that 
aren’t connected to each other. Fortu-
nately, this type of ad hoc network topol-
ogy isn’t likely to exist in the real world 
since, if two wireless devices are close 
enough to a third to communicate with 
it, they’re likely to be able to communi-
cate with each other, too. After the 
researchers added another assumption—
that two devices connected to a third unit 
will at least sometimes be able to estab-
lish links with each other, too—efficient 
communication again became possible.

With both types of message dissemina-
tion, the researchers’ communication 
algorithms were able to thwart the adver-
sary by using randomness. Newport 
observes that the biggest challenge facing 
designers of communications protocols 

for ad hoc wireless networks is interfer-
ence. If two nearby nodes begin transmit-
ting at the same time on the same 
frequency, they can interfere with each 
other, preventing either transmission 
from being received. A protocol, therefore, 
should assign each node a probability of 
transmitting during any one round of 
communication (where a round is defined 
by the time it takes for a node to send a 
message to its immediate neighbors).

The researchers’ algorithms follow 
this rule fundamental to many medium 
access algorithms. Yet, instead of simply 
cycling through a prescribed sequence of 
steadily shrinking probabilities, the algo-
rithms jumble the sequence. Therefore, 
during a local broadcast, each separate 
message possesses its own unique 
sequence of probabilities. Meanwhile, 
clusters of nodes also temporarily elect 
local leaders that coordinate the proba-
bilities for different transmitters.

Newport notes that the new approach 
doesn’t appear to have any meaningful 
negative impact on computation or net-
work speed. “While reliability improved, 
we didn’t observe any major effect on 
performance,” he says.

CURBING SIGNAL CONFLICTS
Software being developed at the Univer-
sity of Michigan aims to improve wireless 
network traffic management while reduc-
ing the interference created by conflict-
ing signals. GapSense, as the software is 
called, allows Wi-Fi, Bluetooth, or ZigBee 
devices, which ordinarily can’t communi-
cate with each other, to swap simple stop 

and warning messages, potentially reduc-
ing the likelihood of signal collisions.

GapSense uses a common language of 
energy pulses and gaps. The length of each 
gap creates a “stop” or “warning” message. 
Devices equipped with the software send 
the messages at the beginning of a trans-
mission, or in between data packets, to 
inform other nearby devices about their 
plans to use a particular slice of spectrum

Bluetooth and ZigBee devices operate 
in the same spectrum as Wi-Fi, yet speak 
completely different languages. All of these 
systems are already equipped with the 
standard carrier sense multiple access pro-
tocol, which enables them to listen for 
radio silence before initiating their own 
transmissions. Yet this approach hasn’t 
proven to be completely reliable. “All of 
these gadgets are using the same frequen-
cies and fighting for space,” says project 
leader Kang Shin (Figure 3). “Since they 
don’t have a direct means of communicat-
ing with each other, because they use dif-
ferent and noncompatible protocols, we 
wanted to give them a way of coordinating 
their transmissions so that each device can 
perform its designed functions while mini-
mizing interference to the other systems.”

Current technology design features 
make some level of interference virtually 
inevitable. ZigBee, for instance, takes 16 
times longer than Wi-Fi to rouse itself 
from an idle state to transmit information. 
“Sometimes,” Shin says, “Wi-Fi believes 
that a channel is clear when a ZigBee 
packet is already being sent over it.” Also, 
ZigBee’s transmit power is 100 times 
lower than Wi-Fi’s output. Shin compares 
the situation to a loud person talking over 
someone who speaks softly. “The little guy 
is saying something, but the big guy 
doesn’t hear it,” he says. “So the little 
guy’s information gets shouted down.”

The researchers claim that GapSense, 
operating in a simulated office environ-
ment, can reduce interference by more 
than 88% on busy networks comprising 
different types of devices. Running a 
moderate amount of Wi-Fi traffic, the 
researchers detected a 45% collision rate 
between ZigBee and WiFi, which 
GapSense was able to reduce to 8%.

Shin notes that the software could also 
address the so-called “hidden terminal” 

[FIG3] Kang Shin of the University of 
Michigan is working to curb signal 
conflicts. (Photo courtesy of the 
University of Michigan.)
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problem. Newer Wi-Fi standards sup-
port faster data rates on wider band-
widths than the current standard of 20 
MHz. Yet devices utilizing different 
bandwidths can’t hear one another’s 
communications to avoid talking over 
them. GapSense promises to allow 
devices on different standards to talk in 
an orderly sequence. At moderate Wi-Fi 
traffic levels, the researchers detected 
around a 40% collision rate between 

wider- and narrower-bandwidth devices, 
which GapSense was able to lower to 
virtually zero.

GapSense could also reduce Wi-Fi 
device energy consumption by 44%, Shin 
says. The software would accomplish this 
feat by allowing the Wi-Fi receiver to 
operate at low clock rates. Using the new 
software, a faster-clocked Wi-Fi transmit-
ter could send a wake-up message to the 
slower-clocked receiver in time for it to 

sync and snare an incoming data packet. 
“The impact of GapSense is potentially 
huge,” Shin states. “It could be the solu-
tion that creates order out of chaos 
within an increasingly diversified world 
of wireless devices.”

AUTHOR
John Edwards (jedwards@johnedwards
media.com) is a technology writer based 
in the Phoenix area.

Automotive Industry Is a Key Component
to the Success of the DSP Sector

T
he automotive industry is 
going strong with sales at 
near record levels in the 
United States and with tech-
nology vendors helping to 

drive the market. According to a recent 
Scotiabank Global Auto Report, each car 
and light truck built in North America 
(the United States, Canada, and Mexico) 
now contains US$3,200 in electronic 
equipment, and that’s expected to increase 
7% a year through this decade, providing 
opportunities for developing innovation 
bumper-to-bumper.

Significantly, industry analysts are 
reporting that signal processing in 
today’s vehicles is increasing rapidly, 
almost from model to new model.

For this new editorial feature for 
IEEE Signal Processing Magazine 
(SPM), in July 2013 we talked to three 
key members of the Texas Instruments 
(TI) automotive business sector, Robert 
Tolbert III (Figure 1), product market-
ing/business development manager of 
automotive infotainment processors, 

Brooke Williams (Figure 2), business 
and marketing manager for TI’s 
advanced driver assistance systems 
(ADAS), and Ian Sherlock (Figure 3), 
Wi-Fi product manager.

IEEE SPM: Advancements in technology 
seem to have shortened the design cycle 
for both electronics and automobile man-
ufacturers. How has this impacted TI?

Brooke Williams: TI is certainly see-
ing a much harder push to put advanced 

technology in vehicles in faster cycle 
time. The carmakers are finding them-
selves under extreme pressure to 
advance the cycle and speed up the 
adoption of the advanced technology 
that we have in the consumer world in 
the vehicle.

One good example is infotainment 
systems. We see infotainment systems 
catching up and adopting new technology 
in vehicles. For TI, it’s a great trend 
because it advances the time from the 
design-in to actually generating revenues.

Robert Tolbert: You will find that 
original equipment manufacturers 
(OEMs) will lean more heavily on com-
panies that they know are able to deliver 
year after year, and that’s why TI feels so 
good about this acceleration of the time 
line. We have been doing automotive 
from analog processors to embedded 
processors for more than 30 years.

IEEE SPM: More specifically, can we 
expect anything new from you in this 
area any time soon?

Tolbert: We announced a new 
“Jacinto 6” automotive infotainment 
processor [DRA74x] at the International 
Consumer Electronics Show in Las 

[FIG1] Robert Tolbert III is the product 
marketing/business development 
manager for automotive infotainment 
processors at Texas Instruments. (Photo 
courtesy of Texas Instruments.)

Digital Object Identifier 10.1109/MSP.2013.2282794

Date of publication: 5 December 2013

Ron Schneiderman

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_______________

mailto:jedwards@johnedwardsmedia.com
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [19] JANUARY 2014

Vegas in January. It has been much 
anticipated from a customer perspective. 

One of the trends we’re seeing in 
infotainment automotive processors is a 
bigger need to drive higher-resolution 
displays. It’s the industry’s first dual Cor-
tex 815-based processor that’s designed 
for automotive. We’ll be talking about 
this more in the future in terms of avail-
ability, as we get closer to sampling the 
product in the middle of this year. As far 
as in what model vehicle this will ini-
tially appear, we’re readying ourselves for 
calendar year 2015.

IEEE SPM: Two recently published 
market research studies report that the 
use of digital signal processors (DSPs) in 
the automotive industry is increasing 
rapidly over time, but they also point out 
that the DSP market is witnessing the 
increasing use of field-programmable 
gate array (FPGA)-based DSP equip-
ment. Can you talk about that, and 
where signal processing continues to fit 
into the automotive sector?

Tolbert: We see a lot of opportunities 
for DSP in automobiles. Examples would 
be infotainment, telematics, and in 
ADAS applications. In the areas specific 
to telematics and infotainment, you will 
see DSPs being leveraged in four areas: 
one is to do the audio pre- and postpro-
cessing for things like noise suppression, 
echo cancellation, and equalization. 
That’s an area where TI DSPs are used 
quite heavily. The second area would be 
the actual audio encode and decode. The 
third area that it lends itself very well to 
is the voice application, particularly the 
voice recognition application. The fourth 
area is software-defined radios. This 
would be for high-definition radio, play-
back, and digital audio broadcasting.

Williams: ADAS is a very exciting mar-
ket. One reason is that there are multiple 
cameras and radar systems in each vehi-
cle, and we continue to see a trend in 
ADAS moving in luxury cars down to 
more midline cars and even into some 
entry-level cars. The pace of that is accel-
erating. So, this market is truly exploding.

To drive home the point of multiple 
sockets in each vehicle, you can buy a 
luxury car today that has up to five TI 
DSPs in the ADAS alone. So, DSPs are 

applicable to the front cameras, which are 
running anywhere from your entry-level 
lane departure, traffic sign recognition, 
all the way up to higher-level applications 
like pedestrian detection. This requires a 
tremendous amount of signal processing 
to run those algorithms simultaneously 
on a single processor. 

A second opportunity is rear cameras. 
We’re starting to see the emergence of 
smart rear cameras where the camera 
has ADAS algorithms that will warn the 
driver if a child or an object is behind the 
car. It will warn you if you’re not looking 
at the screen, and we’re starting to see 
applications that will actually take con-
trol of the vehicle and automatically 
brake. This is another opportunity for 
DSP to run those ADAS algorithms.

There are also surround-view cam-
eras. Typically, it’s four cameras—one 
front, one in the rear, and two on the 
sides. The images are fused together to 
give the driver a kind of top-down view. 
We’re starting to see more of a three-
dimensional, rather than a two-dimen-
sional top-down view where you can 
literally pan around your vehicle. 

Then there’s radar. The trend will be 
for more surround-view radar. And 
applications are emerging for night 
vision with pedestrian detection or 
animal detection. That would require 
another camera. The next step would be 
the fusion of radar and cameras. For a 
central decision unit, that is, taking 
preprocessed data from a radar system 
and a camera system, using that as 
redundant information, and then 
getting a more intelligent decision on 
control of the vehicle.

And we’re moving on to autonomous 
driving. We have the technology to do 
that; Google has a car operating autono-
mously and others are working on this. 
It’s not yet affordable, but we talked 
about the acceleration of the technology, 
and the amount of signal processing 
horsepower we can deliver. So, we’re at 
the early stages of autonomous driving.

IEEE SPM: Do you see any product 
differentiation in the technology that is 
being introduced into automobiles? Is 
this even important to your automotive 
manufacturing customers? Are we seeing 

the same apps with perhaps a different 
“look” or interface?

Tolbert: Differentiation is extremely 
important to our immediate customers, 
Tier 1s and the OEMs. Tier 1s want to 
offer unique applications and end-user 
experiences to the OEMs. The OEMs, in 
turn, want to enable the driver and pas-
sengers to have a driving/riding experi-
ence that is unique to that automobile 
manufacturer. Ultimately, the differentia-
tion leads to familiarity, which holds the 
promise of repeat buyers.

The vehicle infotainment system 
also offers lots of potential for differen-
tiation. It can be as simple as instant 
access to your navigation system, audio/
video, or rear-view camera system when 
you enter the vehicle, and reducing the 
wait time it takes to start your driving 
experience to more complex things like 
sign or street marking recognition to 
improving your global positioning sys-
tem experience. The look, feel, and way 
you interact with your infotainment 
system can also provide a form of differ-
entiation, as OEMs and drivers are 
always looking to reduce complexity 
and make your in-vehicle experience as 
intuitive as possible.

IEEE SPM: Are DSPs playing any 
direct role in improving fuel economy 
and emissions in vehicles? In making 
vehicles greener?

Sherlock: The vehicular environ-
ment poses many electromagnetic com-
patibility challenges. There are already 

[FIG2] Brooke Williams is the ADAS
business and marketing manager at 
Texas Instruments. (Photo courtesy of 
Texas Instruments.)
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[special REPORTS]continued

many sources of RF noise within the vehi-
cle, including intentional RF emitters, as 
well as motors and electronic subsystems 
that generate broadband RF noise. 
Because of this, our wireless connectivity 
products have been designed for coloca-
tion with the other RF subsystems, for 
example, the integration on a printed cir-
cuit board with cellular interfaces.

IEEE SPM: Is there an aftermarket 
opportunity in automobiles for DSP 
technology? If so, how and where, and 
are traditional aftermarket vendors tak-
ing advantage of it?

Tolbert: There is an aftermarket 
opportunity for DSP technology, particu-
larly in the vehicle center console and 
rear seat entertainment systems. The 
DSP technology is being leveraged for 
audio/video playback, voice recognition, 
digital radio, and the like. China is a very 
large market for aftermarket infotain-
ment systems, but volume is flattening 
versus the traditionally manufacturer 
installed systems. Aftermarket infotain-
ment center consoles are a combination 
of resale models and dealer optional 
install models. A couple of players in the 
China market are ForYou, FlyAudio, 
HASE, and CarlT.

IEEE SPM: We talk mostly about 
cars. Do commercial vehicles have any 
special tech requirements and are those 
being addressed?

Tolbert: Commercial vehicles are simi-
lar in their usage of DSP technology, espe-
cially in the areas of speech recognition, 

audio processing to handle noise cancella-
tion/reduction, and vision analytics for 
surround-view camera capture and object 
recognition to assist the driver.

IEEE SPM: Are there currently any 
spectrum issues that could impact auto 
(and ultimately chip) development and 
design?

Tolbert: I don’t see any spectrum 
issues on the horizon that impact chip 
development for infotainment processors. 

IEEE SPM: As engineers, but also 
consumers, do you think there’s enough 
attention being given to ease-of-use for 
drivers?

Tolbert: I think automobile technolo-
gists are paying a great deal of attention 
and spending lots of R&D dollars on 
improving the in-vehicle experience and 
ease of use. The more intuitive and 
enjoyable the in-vehicle experience, the 
higher the chance of a repeat buyer. And 
it lowers the driver distraction, which is 
extremely important to manufacturers 
and consumers. 

As technology providers, we sit at the 
forefront of automobile manufacturers 
question to make driving simpler, safer, 
and more fun. Our role is to provide the 
horsepower and tools to enable things 
like autonomous driving, which will 
require an inordinate amount of complex 
computations and instantaneous data 
manipulations, drowsy driver detection, 
special/visual recognition, and more. 

IEEE SPM: What’s the status of eCall, 
the automotive emergency call system 
for which TI has introduced a reference 
design? (eCall systems will automatically 
place calls to an emergency service 
center in the event of an accident.)

Tolbert: It’s going to be legislation 
driven, completely from a European per-
spective. That’s where the initiative comes 
from. Our reference design is ultimately 
going to be leveraged by a lot of our cus-
tomers in eCall solutions. The reference 
design itself brings together analog and 
embedded processing ICs that we have in 
our portfolio into a single platform to 
help drive this solution. (Legislation is 
expected to make eCall mandatory in 
Europe beginning in 2015.)

IEEE SPM: Do you have any prob-
lems dealing with different rules and 

regulations, and even design cycles, in 
working with vehicle manufacturers in 
different countries?

Tolbert: I can’t speak specifically 
from a design perspective, but we want 
to cover as much ground as we possi-
bly can. When there are different stan-
dards and different requirements 
country to country, we have to work 
those out. We want to make sure that 
we can meet all of the requirements 
from different regions.

Williams: Most of the different stan-
dards are fairly transparent to TI. We just 
want to make sure we enable our custom-
ers to respond to those standards. Typi-
cally, they’re the ones responsible for 
addressing the standards. In ADAS, there 
are no standards today in terms of how 
you implement an algorithm or a func-
tion. We are starting to see the emergence 
of a safety rating that requires autono-
mous breaking, and that is starting to 
form a framework around some standard-
ization. But we’re still a long way from 
having any standard algorithm imple-
mentation in ADAS. 

IEEE SPM: There is an IEEE stan-
dard, IEEE 1616a, for a so-called “black 
box” or motor vehicle electronic data 
recorder (MVEDR), that dictates what 
information has to be captured in the 
event of an accident. Where do we stand 
with the development and use of this 
type of device in motor vehicles?

Williams: We are seeing an increas-
ing level of data recording being done in 
motor vehicles. We offer solutions in 
that space and from an ADAS business 
unit perspective. We are seeing a combi-
nation to adding black box recording 
into some of these ADAS cameras. So, 
you not only can record vehicle data and 
information, but you can record the 
video data as well on a system that’s inte-
grated into the vehicle. 

People are installing aftermarket 
cameras in their vehicles to do video 
black box recording. As cameras become 
more popular and more pervasive in the 
market, it doesn’t make sense to have 
two separate systems. Carmakers are 
starting to spend more time integrating 
black box recording functionality into 
the ADAS camera.

[FIG3] Ian Sherlock is the Wi-Fi product 
manager at Texas Instruments. (Photo 
courtesy of Texas Instruments.)
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IEEE SPM: There’s a lot of interest 
and coverage now of the so-called “con-
nected” car. How connected can it get?

Williams: We see a role for ADAS in 
vehicle-to-vehicle and vehicle-to-infra-
structure. The U.S. Federal Communica-
tions Commission has allocated a band at 
5.9 GHz for short-range communications. 
It’s currently under test by the U.S. Depart-
ment of Transportation (DoT) and other 
countries around the world to see if it’s a 
feasible communications methodology 
that can work from car-to-car. This would 
cover things like, I’m in your blind spot, or 
there’s an accident a half mile ahead, or 
there’s fog ahead; so it could be real-time 
emergency information. 

In terms of vehicle-to-infrastructure, 
that could cover road conditions, or any 

general information related to the road 
for vehicle guidance. We’ll hear more 
about this after the DoT completes its 
tests this year. It’s an interesting new 
opportunity for TI.

IEEE SPM: There has been some 
media coverage suggesting concern 
about how “connected” cars can be 
hacked. Is this possible and, if so, is it 
being addressed?

Tolbert: Car hacking is a growing 
concern for automakers. The introduc-
tion of the “connected” car adds yet 
another means for hackers to gain access 
to critical and noncritical resources in 
the vehicle. Cloud and network connec-
tivity can provide a means for hackers to 
attack the vehicle through malicious or 
nuisance software that makes its way into 

the vehicle via downloadable applications, 
rooting the open operating system, or 
over-the-air updates of vehicle software. 
Automakers are trying to combat and 
neutralize the threat posed by hackers in 
various ways, including physically sepa-
rating the real-time safety critical compo-
nents of the vehicle network from the 
nonreal-time safety critical components, 
like infotainment, into separate ECUs in 
the vehicle, fire walling the vehicle con-
troller area network bus, or trying to con-
tain the threat in a secure environment 
on the main system-on-a-chip of the info-
tainment system.

Editor’s Note: This interview was 
conducted by Ron Schneiderman, a reg-
ular contributor to SPM.

[SP]

Birkhäuser (1999–2011), an associate edi-
tor of IEICE Transactions on Fundamen-
tals of Electronics, Communications, and 
Computer Sciences (2000–2002), and a 
guest associate editors for six special sec-
tions of the same transaction (1994–1999) 
as well as the guest editor-in-chief for the 
special section on signal processing of the 
same transaction (2009). 

He was a member of Japanese del-
egation to ISO/IEC JTC1/SC29/WG11 
for MPEG Audio Standardization (1990–
1994, 1998, 2002, 2007–2008), and the 
interim chair, Audio Subgroup, ISO/IEC 
JTC1/SC29/WG11 at Angra dos Reis Meet-
ing, Brazil (1992). He also served as the 
secretary (1991–1996) of SC29/WG11 
Audio Subcommittee and a member of 
SC29 Committee (1992–1996), both of 
the Information Technology Standards 
Commission of Japan, Information Pro-
cessing Society of Japan. He has drafted 
four Japanese industrial standards, which 
cover MPEG-1, MPEG-2/BC, MPEG-2/
AAC, and MPEG-4 as the chair of the 
Audio Subworking Group (SWG3: 1993–
1995, SWG4: 1995–1996, 2001–2003), a 
member of the MPEG JIS Standardiza-
tion Working Group (WG8: 1993–1998), 

MPEG-1 JIS Standardization Subwork-
ing Group (SWG1: 1996–1998), MPEG-2 
JIS Standardization Subworking Group 
(SWG2: 1996–1998), MPEG JIS Stan-
dardization Working Group (WG6: 1998–
2001), and MPEG JIS Standardization 
Working Group (WG5: 2001–2003), all 
of the Image Processing Technology and 
Standardization and Research Commit-
tee, Image Processing Technology Stan-
dardization Center, Japanese Standards 
Association. 

Dr. Sugiyama is a recipient of the 
Shinohara Memorial Academic Encour-
agement Award from IEICE (1987), Ohm 
Technology Award from the Promotion 
Foundation for Electrical Science and 
Engineering (2001 and 2013), the Best 
Paper Award from IEICE (2002), the 
Incentive Award from the Japanese Soci-
ety of Artificial Intelligence (2005), the 
Achievement Award from IEICE (2006), 
the Sankei Newspaper Award of Fuji-
Sankei Business I, Advanced Technol-
ogy Award from Nikkan Kogyo Shinbun 
Ltd. (2010), and local commendation for 
invention in the Kanto region from the 
Japan Institute of Invention and Innova-
tion (2011). 

Dr. Sugiyama’s current research 
interests are in signal processing and 
its applications to commercial products 
and services. He is an author of 15 book 
chapters on audio and acoustic signal 
processing in Japanese and English with 
one Korean translation. He has published 
more than 100 technical papers in jour-
nals and at international conferences and 
is the inventor or coinventor of 150 regis-
tered patents in Japan, the United States, 
Canada, Australia, and the European Pat-
ent Convention with more pending. 

His lecture topics include “Inter-
ference and Noise Control for Indus-
try Applications,” “25 Years of Audio 
Coding: Technology, Standardization, 
Competition, Collaboration, and Com-
promise,” “Multichannel Echo Cancel-
lation: Discovery of the Uniqueness 
Problem and Development of Solutions,” 
“Efficient and Fruitful Collaboration 
with Students and Junior Engineers: 
28-Year Experiences as a Supervisor of 
70+ International/Domestic Internship 
Students and Master/Ph.D. Candidates,” 
and “What I Wish I Knew When I Was 
an Entry-Level Engineer.”

[SP]

[society NEWS] (continued from page 14)
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Wing-Kin Ma, José M. Bioucas-Dias, 
Jocelyn Chanussot, and Paul Gader

I
n recent years, it has 
become clear that 
hyperspectral imaging 
has formed a core area 
within the geoscience 

and remote sensing com-
munity.  Armed wi th 
advanced optical sensing 
technology, hyperspectral 
imaging offers high spec-
tral resolution—a hyper-
spectral image can contain 
more than 200 spectral 
channels (rather than a 
few channels as in multi-
spectral images), covering 
visible and near-infrared 
wavelengths at a resolu-
tion of about 10 nm. The 
result, on one hand, is significant expan-
sion in data sizes. A captured scene can 
easily take 100 MB, or more. On the 
other hand, the vastly increased spectral 
information content available in hyper-
spectral images (or large spectral degrees 
of freedom in signal processing lan-
guages) creates a unique opportunity 
that may have previously been seen as 
impossible in multispectral remote sens-
ing. We can detect difficult targets, for 
example, those appearing at a subpixel 
level. We can perform image classifica-
tion with greatly improved accuracy. We 
can also identify underlying materials in 
a captured scene without prior informa-
tion of the materials to be encountered, 
by carrying out blind unmixing. 

There are many other exciting 
advances contributed by researchers in 
hyperspectral remote sensing, and their 
great effort has resulted in an enor-
mous number of applications, such as 

surveillance, reconnaissance, environment 
monitoring, land-cover mapping, and min-
eral identification, just to name a few. 
Hyperspectral imaging is also a key tech-
nique for planetary exploration, astrophys-
ics, and nonremote sensing problems such 
as food inspection and forensics. 

There has been much growth in 
research activities related to hyperspec-
tral imaging lately. Figure 1 shows a 
report on the number of publications 
and citations in the “hyperspectral” 
topic. The results were obtained by 
searching the Science Citation Index 
(SCI)-Expanded database of the ISI Web 
of Science with the topic “hyperspectral” 
from 1994 to September 2013. A sharp 
rise with both the publications and cita-
tions counts can be observed from 2010 
to 2013. While major research activities 
on hyperspectral remote sensing are in 
the geoscience and remote sensing com-
munity, hyperspectral remote sensing is 
also an area that contains many interest-
ing and important signal processing 
problems. In fact, this area has attracted 

growing attention and contributions 
from different communities, such as sig-
nal processing, image processing, 
machine learning, and optimization—
and this is what motivates us to organize 
this special issue. 

IEEE Signal Processing Magazine
published a special issue on signal pro-
cessing for hyperspectral image exploita-
tion in 2002, which was particularly 
relevant at the time. After more than ten 
years, we believe that now would be an 
appropriate time to consider another spe-
cial issue on this topic, chronicling 
recent advances, challenges, and oppor-
tunities. Also, this issue has a unique 
theme—to provide a balanced collection 
of tutorial-style articles that introduce 
prominent and frontier signal processing 
topics in hyperspectral remote sensing 
and demonstrate the insight and unique-
ness of signal processing techniques 
established in those topics. We also 
intend to take this opportunity to bridge 
the gap between remote sensing and sig-
nal processing by showing readers a 

[FIG1] The number of published papers having the keyword “hyperspectral” and the 
corresponding citations. Data is obtained from the SCI-Expanded database, ISI Web of Science.  
(a) Published items in each year. (b) Citations in each year.
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sample of relevant problems in hyper-
spectral remote sensing. 

We would like to thank those who 
showed interest in this special issue. We 
received approximately 40 white papers. 
The topics proposed are very diverse from 
one another, and many of them are indeed 
interesting in their own rights: we have 
seen numerous excellent white papers, 
and in some cases, we are comparing 
apples and oranges. However, there are 
page limitations, and consequently only 
nine articles can be accommodated. Again, 
we appreciate the enthusiasm received. 

The special issue can roughly be 
divided into four theme topics: detection, 
classification, unmixing, and compressive 
sensing (CS). It begins with the detection 
topic. Manolakis et al. give an overview 
on the hyperspectral target detection 
problem. The authors then show that 
some state-of-the-art detectors can in 
fact provide consistently good perfor-
mance for practically relevant applica-
tions by resorting to classical detection 
theory and physics-based signal models. 
Performance analysis is presented to 
support the authors’ claims. 

Next, Nasrabadi explores the detec-
tion topic further by looking into recent 
advances in hyperspectral target detec-
tion techniques. In particular, Nasraba-
di’s contribution highlights novel 
detection techniques based on concepts 
in statistical signal processing and 
machine-learning theory, such as sub-
space-based detectors, the support vector 
machine, kernel-based nonlinear detec-
tors, fusion of detectors, and sparsity-
based detectors. 

The third article considers the classi-
fication topic. Classification in hyper-
spectral images is far from being a 
generic image classification problem; it 
is challenging owing to the high dimen-
sionality of data, few training samples, 
nonlinearity, and a number of other fac-
tors. Camps-Valls et al. overview the 
topic by presenting a statistical learning 
theory (SLT) framework for hyperspec-
tral image classification. Under the SLT 
framework, the article covers techniques 
such as standard regularization; active, 
semisupervised, and sparse learning 

approaches; spatial-spectral regulariza-
tion; and adaptation of classifiers and fea-
ture representations. 

Nonlinear manifold learning is another 
promising framework for hyperspectral 
image classification, and it has also 
received much attention. In this frame-
work, the topology of high-dimensional 
nonlinear data sets is represented in lower, 
but still meaningful, dimensions for classi-
fication or other purposes. Lunga et al. 
provide an overview on this representative 
research direction. The article reviews tra-
ditional approaches under a graph embed-
ding framework and describes new 
techniques for modeling hyperspectral 
data on manifolds, such as multidimen-
sional artificial field embedding and spher-
ical stochastic neighbor embedding. 

The next three articles are related to 
the unmixing topic. Ma et al. overview 
blind (or unsupervised) hyperspectral 
unmixing techniques under the linear 
mixing model (LMM) setting. It is worth-
while to mention that this blind problem 
from remote sensing has a strong connec-
tion to blind source separation and sensor 
array processing in signal processing. The 
authors select four significant blind 
unmixing approaches—pure pixel search, 
convex geometry, sparse regression, and 
nonnegative matrix factorization—and 
use a signal processing researcher’s view 
to describe each approach and appreciate 
the methodological beauty within. 

The LMM is not always valid in the real 
world. Recently there has been much 
interest in unmixing based on nonlinear 
models. Dobigeon et al. present an over-
view of recent advances dealing with the 
nonlinear unmixing problem. Representa-
tive nonlinear models, such as intimate 
mixtures, bilinear models, and postnonlin-
ear mixing models, are presented and 
their validity discussed. Then, the main 
classes of unmixing strategies, in super-
vised and unsupervised frameworks, are 
described. The article also addresses an 
emerging subtopic—detecting nonlinear 
mixtures in hyperspectral images. 

In the unmixing topic, most models 
assume that the endmember signatures 
are invariant across the whole image. This 
assumption can be violated in reality, 

owing to various reasons related to mea-
surement and environment. In Zare and 
Ho’s article, the authors review a repre-
sentative set of methods designed to cope 
with endmember variablity. The methods 
are organized in two classes: 1) endmem-
ber sets and 2) endmember as statistical 
distributions. The former class is nonpara-
metric and deterministic, while the latter 
class stochastic. The article reviews 
important methods in both classes and 
highlights their advantages, limitations, 
and challenges. 

The last two articles describes a rela-
tively new front—CS for hyperspectral 
images. This is a well-motivated topic 
since hyperspectral data, in their raw 
form, are often tremendous in size. Arce 
et al.’s article is an overview of the funda-
mental optical phenomena behind com-
pressive spectral imaging sensors. It 
describes the mathematical concepts and 
optimization framework for designing 
optimal coded apertures (i.e., measure-
ments) in hyperspectral image recon-
struction, spectral selectivity, and 
superresolution. All of these ideas and 
concepts are concretized in a specific 
type of spectral imagers known as coded 
aperture snapshot spectral imagers 
(CASSI). Many practical aspects are 
described and illustrated with real data 
and imagery. 

The last article, by Willett et al., pro-
vides a fundamental overview on how CS 
can make a difference in the hyperspectral 
context. It describes how novel sparse 
models enable the design of new hyper-
spectral imaging hardware and acquisition 
methods. Performance limits and tradeoffs 
arising from practical issues, such as 
noise, quantization, and dynamic range, 
are discussed. The authors also consider 
hyperspectral target detection using CS 
measurements without having to recon-
struct the raw hyperspectral data. 
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H
yperspectral imaging applications are many and 
span civil, environmental, and military needs. Typi-
cal examples include the detection of specific ter-
rain features and vegetation, mineral, or soil types 
for resource management; detecting and character-

izing materials, surfaces, or paints; the detection of man-made 
materials in natural backgrounds for the purpose of search and 
rescue; the detection of specific plant species for the purposes of 
counter narcotics; and the detection of military vehicles for the 
purpose of defense and intelligence. The objective of this article 

is to provide a tutorial overview of detection algorithms used in 
current hyperspectral imaging systems that operate in the 
reflective part of the spectrum (0.4–2.4 .m)n  The same algo-
rithms might be used in the long-wave infrared spectrum; how-
ever, the phenomenology is quite different. The covered topics 
and the presentation style have been chosen to illustrate the 
strong couplings among the underlying phenomenology, the 
theoretical framework for algorithm development and analysis, 
and the requirements of practical applications. 

INTRODUCTION
In hyperspectral target detection applications, we seek to deter-
mine whether a rare object with a known spectral signature is 
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present or not in the imaged scene. The term rare is used here to 
signify a relatively small number compared to the total number of 
pixels, e.g., a few pixels in a million pixel image. 

The processing methods developed for landscape classifica-
tion over the last few decades are not applicable to target 
detection for two reasons. First, even if there are targets in the 
scene, their number is typically too small to support estima-
tion of statistical properties of the target class from training 
data. Second, depending on the spatial resolution of the sen-
sor, targets of interest may not be clearly resolved and hence 
may appear in only a few pixels or even as part of a single pixel 
(subpixel target). The isolated character or absence of targets 
from the imaged scene makes verification by means of cluster-
ing of like samples problematic. However, as we explain in this 
article, target detection is still possible in these situations by 
developing algorithms using classical detection theory and 
physics-based signal models. However, even the best detection 
algorithms exhibit a large number of false alarms; therefore, 
in practical systems, detected targets are further analyzed by 
the false alarm mitigation (FAM) and target identification 
(TID) algorithms. A large number of hyperspectral detection 
algorithms have been developed and tried over the last two 
decades. The reviews in [1] and [2] cover developments up to 
2002; more recent developments are reviewed in [3]. 

The purpose of this tutorial review article is threefold. First, we 
introduce the physical principles that determine the nature of tar-
get and background clutter spectra measured by a hyperspectral 
sensor. Second, we derive the detectors currently used in practical 
applications, investigate their properties and performance, and 
discuss their practical implementation. Third, we discuss the need 
for FAM and TID algorithms and review some recent work in these 
areas. Whenever possible, we take the opportunity to mention 
areas where further understanding of phenomenology or better 
algorithms would be beneficial. 

AT-SENSOR RADIANCE SIGNAL MODEL
We start with a simple discussion of the radiation components in 
the reflective spectral region. As shown in Figure 1, the total radia-
tion signal reaching the sensor consists of three components: 

1) the radiation L1  reflected from the pixel of interest, i.e., the 
direct and diffused solar radiation incident on the pixel surface 
and reflected directly into the sensor (reflected radiance)  
2) the radiation L2  reflected from the surface surrounding the 
pixel of interest and scattered by the air volume into the sensor 
(adjacency radiance)  
3) the path radiance L3 , i.e., the photons scattered into the 
sensor’s field of view, without ground contact. 

Only the reflected radiance component L1  contains information 
about the pixel of interest. The task of atmospheric correction is 
the calculation and removal of components L2  and L3  and the 
retrieval of the pixel reflectance from component L1 .

Although the interactions of the radiance terms are not inde-
pendent, under many atmospheric conditions and wavelengths 
the total spectral radiance ( )L km  received at the sensor can be 
well approximated by the linear relation [4] 

( ) ( ) ( ) ( ),L c dk k k km m t m m= + (1)

where km  is the central wavelength of the kth spectral channel 
and ( )kt m  is the pixel surface reflectance. The first term in (1) 
corresponds to L1 ; the second term includes L2  and L3 .

RADIANCE AND REFLECTANCE DOMAINS
Hyperspectral imaging sensors have a sufficient number of spec-
tral bands to allow extraction of spectra that closely resemble those 
acquired by laboratory spectrometers. This makes possible, at least 
in principle, the use of such spectra to identify materials based 
upon their reflectance properties and provides the basis for most 
hyperspectral imaging applications. Several libraries of high-reso-
lution reflectance spectra of natural and man-made materials have 
been compiled by various organizations and are available for public 
use. We note that quite often the spectral signatures provided for 
various materials represent “averages” or “typical” examples. To 
use these library spectra, the raw sensor data must go through a 
series of processing steps to convert it to a usable format. 

The first step in the conversion process is to calibrate the raw 
sensor data to the physical units of radiance. Radiance quantifies 
the energy at a given time passing through the input aperture of 
the sensor within a certain angular extent (solid angle) as a func-
tion of direction. The second step is the application of physical 
radiative transfer models to convert the radiance data to reflec-
tance. This is known as atmospheric compensation. These mod-
els account for atmospheric transmission and the atmosphere’s 
thermal emission. The difficulty with radiative transfer models 
lies in needing a rather detailed understanding of the atmo-
spheric constituents. For example, the number and distribution 
of the small suspended particles, called aerosols, are typically 
unknown and often difficult to estimate. Alternatively, there are 
in-scene methods that assume the presence of materials with 
known spectral signatures [5] to enable the retrieval of the 
desired reflectance signature. 

L3

L1

L2

ρe ρeρ

[FIG1] The physics-based model for at-sensor measured radiance 
from a Lambertian ground pixel surface. 
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The challenge of atmospheric compensation can be under-
stood by considering the spectra in the rectangular area enclosed 
by the white frame in Figure 2. Figure 3(a) shows radiance spectra 
for all pixels of this green area as measured by a calibrated sensor. 
Figure 3(b) shows the reflectance spectra after in-scene atmo-
spheric compensation. It is obvious that the two graphs for each 
material appear significantly different and that the rich spectral 
content introduced by the atmosphere dominates the spectral 
radiance signatures. 

SPECTRAL VARIABILITY
Figure 4 shows a scatter plot for the ground cover areas shown 
in Figure 2. We note that measured spectra corresponding to 
pixels with the same surface type exhibit a random variation 

(spectral variability) that prevents the characterization of homo-
geneous surface materials by unique spectral signatures. The 
pixel-to-pixel spectral variability (background clutter) is mea-
sured by the signal-to-clutter ratio (SCR), which typically domi-
nates sensor noise. Hence, detection algorithms primarily focus 
on clutter suppression. 

The mathematical representation of the “spectral-swarms” in 
Figure 4 provides the basis for the development of hyperspectral 
exploitation algorithms. The statistical approach models the data 
clouds using probability distributions; the geometrical approach 
typically uses linear subspaces [2]. The geometrical approach can 
be justified by the linear mixing model, which states that when a 
pixel contains several spatially distinct materials, its spectrum is 
given by 

x s s e Sa ea am m1 1 g= + + + = + (2)

, ,a a a0 1k m1 g$ + + =  (3)

where sk  is a “pure” spectrum, called endmember, ak  is the fill-
fraction of each endmember, and e  is the residual that accounts 
for the difference between the measured and modeled spectra. The 
mixing component Sa  in (2) lies in an m-dimensional subspace of 
R p. The constraints (3), which ensure physically meaningful val-
ues for the fill-fractions, force the mixed spectra to lie on a simplex 
in R p. The enforcement of the nonnegativity constraint a 0k $

introduces a major complication in the analysis and application of 
the linear mixing model. 

STATISTICAL MODELING OF BACKGROUND CLUTTER
Inspection of several density scatter plots, like the one in Figure 4, 
suggests that a plausible model for the PDF of hyperspectral imag-
ing data is the density mixture 

( ) ( ), , ,x xf f 0 1k
k

N

k k k
k

N

1 1

C C

$r r r= =
= =

/ / (4)

[FIG2] Areas of interest for different ground covers: trees, 
different types of grass, a road, and a small area dominated 
by shade.
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[FIG3] (a) and (b) Radiance and reflectance spectra retrieved 
from radiance extracted from the green grass area located on 
the left of the road in Figure 2 (white rectangular frame).
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[FIG4] The scatter plot for the ground cover areas shown in 
Figure 2. Note that the grass class includes three different 
overlapping types of grass.
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where kr  is the a priori probability, ( )xfk  is the PDF of the kth 
component (class), and NC  is the number of components. In clas-
sification applications, each component is modeled using a normal 
distribution [6]. A random vector x  has a Gaussian or normal dis-
tribution, denoted by ~ ( , )x m CNp , if its probability density func-
tion (PDF) is given by [7] 

( )
( ) | |

( ) ( ) ,expx
C

x m C x mf
2

1
2
1

p
T

2 2
1

1

r
= - - --; E (5)

where m  is the mean and C  is the covariance matrix. 
For target detection applications, the components ( )xfk  must 

capture the heavy-tail behavior of natural hyperspectral back-
grounds. A useful and flexible model that fulfills this requirement 
is the multivariate t-elliptically contoured distribution ( t-ECD), 
defined by [7] 

/ ,x z m/1 2g o= +-^ h (6)

where ~ ( , )z CN 0  and ~ ( )02g |o . When ,1o =  the t-ECD is 
equal to the multivariate Cauchy distribution and has very heavy 
tails. As " 3o , the distribution tends toward the multivariate 
normal distribution and has lighter tails. Modeling of natural 
hyperspectral backgrounds using t-ECD mixture densities is thor-
oughly discussed in [8].

MODELING SUBPIXEL TARGETS
Consider a target object that occupies a fraction of the pixel area. 
The result is a mixed pixel whose spectrum is determined by the 
linear mixing model defined by (2) and (3). The mixed spectrum is 
given by 

( ) , ,x s va a a1 0 1# #= + - (7)

where a  is the target fill-fraction, s  is the target spectrum, and v
is the spectrum of the surrounding background. Equation (7) is 
known as a replacement target model because when the target is 
present, it “replaces” an equal part of the background. When 

,a 1=  we have a resolved or full-pixel target, whereas if 
,a0 11 1  we have a subpixel target. For full-pixel targets, the 

major obstacle to detection is the variability of target and back-
ground spectra. An additional obstacle for subpixel targets is that, 
according to (7), the background acts as interference, which 
directly distorts the shape of the observed target spectrum. 

Note that the additive target model x s va= + , used in radar, 
is a good approximation to the replacement target model when 
a 1% . The simplex for m 2=  is the line segment connecting the 
tips of s  and v. For real data, the mixed pixels are clustered 
around this line because off spectral variability. This is clearly 
illustrated in Figure 4 in the case of the road and green grass 
classes; pixels at the edge of the road are mixed with green grass 
and lie between the road and grass swarms. 

A statistical replacement model is obtained if we assume that 
the target ~ ( , )s m CN t t  is mixed with one of the background 
classes [9]. Since the tails of the PDF have practically no effect on 
the probability of detection, we assume that ~ ( , )v m CN v v . This 
results in the following distribution 

~ ( ( ), ( ))x m CN a a
( ) ( )m m ma a a1t v= + -

( ) ( ) ,C C Ca a a1t v
2 2= + - (8)

where mv  and Cv  are the parameters of the mixing class. A major 
practical problem with this model is that we seldom have accurate 
estimates of the target covariance matrix. 

LIKELIHOOD RATIO DETECTORS
It is well known from statistical decision theory that decisions 
based upon the likelihood ratio test (LRT) are optimum over a 
wide range of performance criteria [10]. Among them is the Ney-
man–Pearson (NP) criterion, which maximizes the probability of 
detection for any desired probability of false alarm. The LRT is 
defined by 

( )
( | )
( | )

( | )
( | )

,x
x
x

x
x

f
f

f H
f H

Target absent
Target present

H

H

0

1

0

1

_ U hK = (9)

where ( | )xf Hi  is the conditional PDF under each hypothesis. 
Using the density mixture model (4) for ( | )xf H0  and the replace-
ment model (8) for ( | )xf H1  leads to a computationally compli-
cated LRT with many unknown parameters. Efforts to simplify the 
problem include the use of a single class for the background [9], 
[11] or clustering the data and using a detector for each class [12]. 
Despite their intuitive appeal, cluster-based detection techniques 
do not seem to perform better than the currently used matched 
filter algorithms [13]. 

The essential performance metric for target detection algo-
rithm is the receiver operating characteristic (ROC) curve. Reli-
able estimation of PD requires between 50 and 100 target pixels 
with approximately the same fill-fraction. This costly requirement 
has limited the availability of data sets for the assessment of target 
detection algorithms. Therefore, we often resort to performance 
prediction models or we pick a threshold that allows detection of 
all targets and we count the number of resulting false alarms. 

For a fully fair comparison of detection algorithms, we should 
take the position of an operational user and consider how the use 
of each detector in a practical application affects its performance 
and utility. Two very important practical requirements are good 
performance on a diverse variety of targets and backgrounds and 
operational ease of use by nonexperts. Furthermore, computa-
tional complexity, numerical robustness, robustness to the selec-
tion of free parameters, and operation without a man-in-the-loop 
are also critical for surveillance applications. 

MATCHED FILTER DETECTION THEORY
The matched filter algorithms used in current systems are often 
derived in the hyperspectral literature using the additive model 
[12], which is a good approximation for small fill-fractions and a 
bad one for full-pixel targets. In [1], we partially bypass this incon-
sistency by providing separate derivations for full- and subpixel tar-
gets. In this article, we derive the matched filter detectors without 
any attempt to choose a “good” signal model for the data. Instead, 
we use the shape of the decision surface to choose algorithms and 
explain their suitability for hyperspectral target detection. 
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Consider a p 1#  observation vector x  with distribution 

~ ( , ),x s CN ap b b
2v (10)

where a 0$  and 0b
2 $v  are scalar quantities, s  is a p 1#  vec-

tor, and Cb  is a p p#  positive definite matrix. 
The objective is to find an NP test (detector) to choose between 

the following hypotheses: 

: ( )H a 0 target absent0 = (11a)
.: ( )H a 0 target present1 2 (11b)

The vector s  and the matrix Cb  are always assumed known. Since 
the matrix Cb  is positive definite, its square-root decomposition 
C C C/ /

b b b
1 2 1 2=  is invertible. Therefore, the whitening 

transformation

,x C x s C s/ /
b b

1 2 1 2= =- -u u (12)

results in the random vector

~ ( , )x IsN ap b
2vu u (13)

with spherical (“white”) normal distribution. The detection prob-
lems specified by (10) and (1) or by (13) and (1) are equivalent; 
thus, we use the spherical model (13) to simplify subsequent deri-
vation and analysis. 

If the distribution in (13) is fully specified, i.e., we know a  and 
b
2v , the likelihood ratio is given by ( ) ( | ) /x xf H1K =u u ( | )xf H0u . If 
( )xK u  exceeds a certain threshold h  we accept H1  as true; other-

wise, we accept H0  as true. Since any monotonic function of 
( )xK u  results in equivalent decisions, the LRT for the signal model 

(13) leads to the following test: 

.xsy a T

H

H

b1 1
2

0

1

U h v= uu (14)

If a 02  under H1 , we can divide both sides of (14) by a  without 
affecting the direction of the inequality. The resulting statistic 

s xy T
2 = u u  is completely independent of a. In conclusion, if a  is 

unknown but a 02 , the matched filter (MF) detector, which is 
usually defined by the normalized expression 

MF
s s

s x
s C s

C xsy
T

T

T
b

T
b

H

H

1

1

MF
0

1

U h= =
-

-

u u

u u (15)

is NP-optimum for all values a 02 . Therefore, the MF detector 
(15) is a uniformly most powerful (UMP) test. The MF does not 
have the constant false alarm rate (CFAR) property because the 
threshold depends on both a  and b

2v .
If a  and b

2v  are unknown, an intuitively appealing approach is 
to use their maximum likelihood estimates (MLEs) to form a gen-
eralized LRT (GLRT). The MLEs of a  and b

2v  in (13) are 

, ( ) .
s s
s x x x

s s
s x

a pT

T

b
T

T

T
2

2

v= = -t
u u
u u t u u

u u

u u
(16)

The resulting maximum value of the likelihood function is
( / ) / ( ) .exp p 2 2 /

b
p2 2rv- t  Therefore, the GLR is 

( )
( ) ( )

( ) .x
s s x x

s x
H
H 1

under 
under

G
b

b

p

T T

T
p

2
0

2
1 2 2 2

v

v
K = = -

- -

u
t

t

u u u u

u u
e o = G (17)

Since a 02  under H1  and only the term s xTu u  retains the 
sign of at , the normalized MF (NMF), defined by 

NMF NMF
s s x x

s x
s C s x C x

s C xy
T T

T

T
b

T
b

T
b

H

H

1 1

1

0

1

U h= =
- -

-

u u u u

u u (18)

is a logical test for the hypotheses (11). The NMF is also known as
a CFAR matched filter [14]. Figure 5 provides an intuitive geomet-
rical interpretation of MF and NMF detectors in the whitened 
space. The vector /s su u , where ·  denotes Euclidean length, is a 
unit vector; hence, the value of yMF  is the scalar projection of the 
observation vector onto the target. In contrast, the value of yNMF

is the cosine of the angle between the observation and target vec-
tors. Therefore, the NMF is invariant to scaling of the target and 
observation measurements and has the CFAR property. In fact, the 
NMF has the CFAR property for all elliptically contoured distribu-
tions. The NMF is uniformly most powerful only for the class of 
detectors that are invariant to rotations about su  and to scaling of 
target and observation spectra [10]; therefore, under the signal 
model (13), it cannot perform better than the UMP MF detector. 
This must be expected because the NMF assumes that b

2v  is 
unknown, i.e., the NMF uses “less” information. 

To understand the operation of MF and NMF detectors in the 
whitened space, we look at their decision boundaries, which are 
obtained by equating (15) and (18) to a constant threshold value. 
The decision surface for the MF is a hyperplane perpendicular to su
at a location determined by the threshold MFh . Note that all obser-
vations vectors with tips “touching” this hyperplane have the same 
MF response. The decision surface for the NMF is the surface of a 
cone with vertex at the origin and axis along the vector su . The ver-
tex angle NMFi  is specified by the threshold NMFh .

If the mean value of x  in (10) lies in a known subspace, i.e., 
( )x S aE t t= , where St  is a p qt#  matrix, the GLRT for a 0t =

versus a 0t !  is given by [1] 

x2
~

x~

as~

x1
~0

ηAD

ηMFθ

θNMF

yMF

NMF Decision
Hypercone

MF Decision
Hyperplane

[FIG5] Geometrical interpretation of MF, NMF, and AD decision 
surfaces in the whitened-observation space. These decision 
surfaces determine the performance of each detector for any 
situation.
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( ) ( ) .x x C S S C S S C xT T
b t t

T
b t t

T
b

1 1 1 1= - - - - (19)

If q pt =  and St  has full rank, the target subspace spans the 
entire observation space, and the GLRT statistic (19) is reduced to 
the square-law detector 

,x C x x xy T
b

T

H

H
1

AD AD
0

1

U h= =- u u (20)

which is also known as the RX anomaly detector (AD) [15]. We 
note that the MF and NMF detectors use the target signature s  to 
determine a “preferred” search-direction in the whitened-observa-
tion space. Since the AD does not use the target signature, there is 
no preferred direction; the decision is based solely on the Mahala-
nobis distance x C xT

b
1-  or the Euclidean distance xu . Thus, the 

decision surface of AD is a hypersphere in the whitened-observa-
tion space (see Figure 5). Overviews of AD algorithms are provided 
in [3], [16], and [17]. 

IDEAL PERFORMANCE ANALYSIS
Detection performance is commonly evaluated in terms of ROC 
curves. The use of the scaled covariance Cb b

2v  in the signal model 
(10) was necessary for the derivation of the NMF detector. To sim-
plify subsequent derivations and notation, without any loss of gen-
erality, we assume 1b

2v =  for the rest of the article. 
We first determine the PDFs under the true model (13), which 

ensures the best theoretical performance for each detector. Since 
spherical distributions are invariant under orthogonal transforma-
tions (rotations) [7], to simplify the derivations, we use the 
transformation 

, .z Q x Q QT T 1= = -u (21)

The orthogonal matrix Q  is chosen such that 

Q s esT
1=u u (22)

with .[ ]e 1 0 0 T
1 f=  The first column of Q  is the unit vector 
/q s s1 = u u ; the remaining columns are arbitrarily chosen to 

make Q  an orthogonal matrix. Since 

,q x s x
s

z yT
T

1 1 MF= = =u
u
u u (23)

the effect of this rotation is to fit the response of the MF along the
direction of the target vector in the whitened-observation space 
and to fit the remaining coordinates of z  along the remaining 
“target-free” directions. 

The distribution of the rotated observation vector is 

~ ( , ) .z e IN a sp 1u (24)

Using (20), (23), and (24) and the definition of the chi-squared dis-
tribution, we obtain 

~ ( , )y z N a s 11MF = u (25)

~ ( ) .zx sy Qz ap
2 2 2 2 2 2

AD |= = =u u (26)

To derive the distribution of the NMF, we note that 

, ,
z

y
z
z

p t
t t p z
1

11
2 2

1
2NMF _= =

- +
- (27)

where [ ]z z zp
T

2 2f_ . From (27) and the definition of t-distri-
bution, we have 

p 1-

~ ( ),st
z

z t a
1

p
1

1

2

= - u (28)

which is a noncentral t-distribution. The PDFs under H1 (target 
present) hypothesis depend on the SCR 

,s s C sa aSCR T
b

2 2 2 1_ = -u (29)

which is the Mahalanobis distance between the means under the
two hypotheses. Note that a 0=  under the H0  hypothesis. Thus, 
we can use these PDFs to evaluate the performance of MF, NMF, 
and AD using ROC curves. 

PERFORMANCE UNDER MODEL MISMATCHES
Application of the MF and NMF assumes perfect knowledge of the 
in-scene target signature s  and the clutter covariance matrix Cb .
We now analyze performance losses when the signature s0  and 
covariance C0  used by the detectors are 

s s0 ! ( )Signature mismatch (30)
( ) .C C ssa Target in covarianceb

T
0

2= + (31) 

We first recall that the linear filter h xy T=  that maximizes the 
output SCR, defined by 

( | )
[ ( | ) ( | )] ( ) ,

h C h
h s

y H
E y H E y H aSCR Var T

b

T

0

1 0
2 2 2

out =
-

= (32)

is the MF h C sb
1l= - , where l  is a normalization constant; the 

resulting maximum output SCR is given by (29). 
Equivalently, the MF minimizes the output variance 
( ) ( )h x h C hyVar Var T T

b= =  while keeping the gain in the direc-
tion of the target constant. Thus, the MF solves the optimization 
problem [18] 

min h C h h s 1subject to
h

T
b

T = (33)

with the inconsequential change that / .s C s1 T
b

1l = -

If we use the MF / ,h C s s C sb
T

b1
1

0 0
1

0= - -  the output SCR is 
given by [19] 

( , ; ) ,cos s s CSCR · SCRb1
2

0
1= - (34)

where ( , ; )cos s s Cb
2

0
1-  is the generalized cosine defined by 

( , ; )
( ) ( )

( )cos s s C
s C s s C s

s C s
b T

b
T

b

T
b2

0
1

1
0

1
0

1
0

2

_-
- -

-

(35)

and ( , ; ) .cos s s C1 1b
2

0
1# #- -  The performance loss depends 

on the mismatch factor ( , ; ),cos s s Cb
2

0
1-  but it is independent of 

the strength a  of the target. If the target is present in the clut-
ter covariance matrix, [see (31)], the MF is defined by 

/ .h C s s C sT
2 0

1
0 0 0

1
0= - -  The output SCR is given by [19] 

[ ( ) ( , ; )] ,sin s s C1 2SCR SCR SCR SCR b2 1
2 2

0
1 1= + + - - (36)
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where ( , ; ) ( , ; )sin coss s C s s C1b b
2

0
1 2

0
1= -- - . The loss due to 

covariance contamination (target-in-covariance) is determined by 
the term ( ) ( , ; )sin s s C2SCR SCR b

2 2
0

1+ - , which shows a strong 
dependence on the target strength through SCR and on mis-
match through ( , ; )sin s s Cb

2
0

1- . Thus for strong targets, the losses 
can be significant. 

Similar conclusions can be drawn by performance evaluation 
of both the MF and NMF detectors using ROC curves under the 
Gaussian model (10). Similar analysis also shows that the NMF, 
which uses angular information, is more sensitive to mismatch 
than the MF [20]. 

Although the effects of target mismatch and covariance con-
tamination have been extensively analyzed, there are not many 
practical techniques for their mitigation. A plausible way to reduce 
mismatch losses is to relax the “line-pointing” constraint in (33). 
This can be done by changing the constraint in (33) to form the 
following optimization problem: 

min h C h h s 1subject to
h

T
b

T $ (37)

for all signatures s  in the hypersphere s s0
2 2# e- . The value 

of e  determines the “selectivity” of the detector. Several solutions 
to (37) have been proposed in the literature [18]; the most practi-
cal ones lead to some kind of diagonal loading C Ib

2p+ . An inter-
esting solution in [21] provides a direct link between e  and the 
diagonal loading factor p . The resulting MFs are robust to signal 
mismatch and covariance contamination in exchange for a higher 
false alarm rate. 

PRACTICAL HYPERSPECTRAL DETECTORS
The scatter plot in Figure 4 and the decision surfaces in Figure 5
provide insight for the selection of hyperspectral target detection 
algorithms. We note that an NMF with a vertex at the center of the 

grass cloud and axis pointing to the road cloud is the natural 
choice for the detection of subpixel and full pixel “road” targets. 
This is illustrated in Figure 6, which also clearly shows why a zero-
centered NMF would not be a good choice for subpixel targets. 
However, we must stress that the ultimate criterion of success is 
performance in real applications. 

The clutter-centered MF and NMF are obtained by subtracting 
the clutter mean from (15), (18), and (20). This yields 

( ) ( )
( ) ( )

s m C s m
s m C x m

y
b
T

b b

b
T

b b

1

1

MF =
- -

- -
-

-

(38)

( ) ( )x m C x my b
T

b b
1

AD = - -- (39)

.y
y

y
NMF

AD

MF
= (40)

In practice, the mean mb  and covariance Cb  of the background 
clutter are replaced by their maximum likelihood estimates 

, ( ) ( ) .m x C x m x m
N N
1 1

b k
k

N

b
k

N

k b k b
T

1 1
= = - -

= =

t t t t/ / (41)

The square of (38) is known as the adaptive MF (AMF) [22]. The
square of (40) is known as the adaptive NMF (ANMF) [23] or adap-
tive cosine/coherence estimator (ACE) [24]. The term adaptive is 
often used to emphasize that the clutter moments are estimated 
from the data. 

We shall use a simple example to illustrate some challenges 
related to the application and performance evaluation of AMF and 
ANMF detectors using a data set from the Hyperspectral Digital 
Imagery Collection Experiment (HYDICE) Forest Radiance I 
experiment [2]. Figure 7 shows the basic components of a typical 
target detection system. The cube of raw digital numbers is cali-
brated to a radiance cube, which is then converted to reflectance 
to allow the use of target signatures from a library. We focus on a 
green tarp target having the library signature shown in Figure 8; 
all other targets have been removed from the data. There are three 
different sizes of green tarps in the scene; the smallest tarp corre-
sponds to a subpixel target. 

We first note from Figure 8 that there is a mismatch between 
library and in-scene target spectra due mainly to material variabil-
ity, atmospheric compensation errors, sensor calibration limita-
tions, and mixing for subpixel targets. Furthermore, there is 
mismatch between the normal distribution assumed in (10) and 
the distribution of the multiclass background of Forest Radiance I 
scene. Since the presence of targets in the estimate Cb

t  decreases 
performance, we use the AD algorithm (20) to remove “targetlike” 
pixels from the training data (target-free background estimation). 

In practice, Cb
t  is often ill conditioned, and its small eigenval-

ues and corresponding eigenvectors are difficult to estimate and 
hard to compute accurately even if N p& . Numerically stable and 
more robust detectors can be formed by eliminating the smaller 
eigenvalues through averaging and loading. We often use domi-
nant mode rejection combined with diagonal loading [25], [26]. 

Figure 9 shows images of the scene and the responses of the 
AD, MF, and NMF detectors for each pixel. Inspection of these 
detection statistics indicates that the MF and NMF score high at 
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the target pixels; however, we stress that visual assessment is not a 
dependable way to evaluate detection performance. 

PERFORMANCE FOR MULTICLASS BACKGROUNDS
If we model the background clutter with a density mixture of 
t-ECDs and the target with the statistical replacement model, we 
can develop a model to investigate the performance of MF and 
NMF detectors under more realistic scenarios [27]. Needless to 
say, in practice, it is impossible to find PDFs that capture all 
aspects of hyperspectral imaging data. The presence of man-made 
structures in a scene can produce false alarms that cannot be pre-
dicted by any model. 

The multiclass model has been used to develop a performance 
prediction tool useful in obtaining insight and evaluating sensors 
and detection algorithms under different deployment conditions. 
Another interesting and useful application of the model is shown 
in Figure 10, which shows a scatter plot of NMF versus MF 
responses for the Forest Radiance I data set. The ribbon shows a 
95% confidence interval for the NMF and MF responses predicted 
by a five-class t-ECD model. We first note that the model does a 
reasonable job at predicting the range of detector responses and 
the majority of background responses. Clearly, the NMF provides a 
better separation between target and clutter pixels compared to 
the MF. Most pixels that exceed the MF threshold belong to other 
targets and man-made objects present in the scene. We again 
stress that such results do not prove the validity of the model; a 
thorough validation of the predictive model, which is work in 
progress, is a laborious and expensive undertaking. 

FALSE ALARM MITIGATION ALGORITHMS
In practice, all detection algorithms exhibit a large number of false 
alarms [28]. A promising approach to deal with this challenge is 
postprocessing of the top hits with FAM algorithms [11]. The NMF 
and MF detectors make decisions by exploiting the statistical dis-
tributions of targets and clutter in the clutter-whitened space. 
Practical experience has shown that both algorithms are relatively 
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[FIG7] A block diagram of a typical hyperspectral target detection system.
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[FIG9] Imaged scene and detection statistics (detector response) 
for the AD, MF, and NMF algorithms. The images in (b) show the 
area around the targets of interest, which correspond to (a) the 
red frame box in the large images. 
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robust to model mismatches, including clutter multimodality, 
covariance estimation, and target signature mismatch. Therefore, 
FAM algorithms must exploit information not available in the 
detection statistic. In this sense, the development of FAM algo-
rithms is an art involving statistics, spectroscopy, and spatial 
image processing. False alarms can also be mitigated using infor-
mation from coregistered high-resolution video. 

A simple but useful FAM algorithm for the MF detector can be 
obtained by exploiting the geometry in Figure 11. We note that all 
observation vector with tips touching the MF hyperplane have 
identical MF responses. However, according to model (8), “true” 
subpixel targets have a normal distribution centered at the line 
connecting the target and clutter distributions at a location speci-
fied by the target fill factor. The center of the target distribution is 
the estimated fill factor at  in (16), which is given by / sa yMF=t u .
The Mahalanobis square distance 

( ) ( ) ( ) ( )x x s C x sx as a a aT2 2 1D = - = - --u tu t t (42)

is inversely proportional to the likelihood that the test pixel is a
subpixel target. The approximation ( )C Ca b-  works reasonably 
well in practical applications. Figure 12 shows a typical scatter plot 
of MD versus MF response for a detection experiment involving a 
man-made target. We note that with the use of a second threshold, 
we can significantly reduce the number of false alarms. The use of 
a CFAR threshold is possible by modeling the distribution of (42). 
More details about the MF with FAM can be found in [11]. 

TARGET IDENTIFICATION
The task of a TID algorithm is to determine whether a pixel picked 
out by the detector contains indeed the target of interest. This is a 
difficult undertaking because different scene components may 
result to similar or identical spectra (mimics). The problem is 
more prominent for subpixel targets because of spectral mixing. In 
this case, the first step is to estimate the target spectrum using 
unmixing techniques. Identification algorithms use the estimated 
spectrum and material spectral libraries to associate this spectrum 
with the reference spectrum of some material. Typical approaches 
exploit ideas from the areas of linear unmixing, F-test-based 
model selection, Bayesian model selection [29], [30], band selec-
tion techniques [31], and spectroscopy [32]. 

CONCLUSIONS
The development of practical hyperspectral target detection algo-
rithms requires the understanding and joint exploitation of phe-
nomenology, sensor technology, and statistical signal processing. 
Target variability, the mismatch between library and in-scene sig-
natures, and false alarms from spectral “mimics” constitute major 
challenges to be overcome by future algorithms. Therefore, the 
development of FAM and TID algorithms is expected to be an 
active area of research in hyperspectral target detection. 
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[FIG12] The MF with FAM uses a “subpixel likelihood metric” 
and double thresholding to reduce false alarms.
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O
ver the last decade, hyperspectral imagery (HSI) 
obtained by remote sensing systems has pro-
vided significant information about the spectral 
characteristics of the materials in the scene. 
Typically, a hyperspectral spectrometer provides 

hundreds of narrow contiguous bands over a wide range of the 
electromagnetic spectrum. Hyperspectral sensors measure the 
reflective (or emissive) properties of objects in the visible and 
short-wave infrared (IR) regions (or the mid-wave and long-
wave IR regions) of the spectrum. Processing of these data 
allows algorithms to detect and identify targets of interest in a 
hyperspectral scene by exploiting the spectral signatures of the 
materials [1], [2]. 

Target detection is basically a binary classifier with the aim of 
labeling every pixel in the image as a target or background. Since 
only a small fraction of all the pixels in the image can be labeled 
anomalies or classified as targets, the overall classification error is 
not a good measure of performance since pixels of interest are 
sparse. Therefore, classical target detection algorithms are based 
on the Neyman–Pearson criterion, which maximizes the probabil-
ity of detection for any fixed probability of false alarm. A detailed 
discussion of performance and evaluation of the classical target 
detection techniques and their implementation issues are dis-
cussed in a companion article [3]. However, this article mainly 
focuses on the use of more recent statistical signal processing and 
machine-learning techniques for hyperspectral anomaly and tar-
get detection. Techniques such as support vector data description 
(SVDD), sparse representation classifiers, regularization tech-
niques, kernel-based detectors, fusion of detectors, subspace-based

[Nasser M. Nasrabadi]
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methods, and challenges associated 
with their implementations are 
reviewed. In this article we only show 
experimental results for full-pixel tar-
gets. However, most of the algo-
rithms are applicable or can be 
extended to subpixel or gaseous tar-
gets where the strength of the target 
is unknown. 

ANOMALY DETECTORS
Anomaly detectors are pattern recognition or statistical 
schemes used to detect objects that stand out from the cluttered 
background. In spectral anomaly detection algorithms [4], [5], 
pixels that have a significantly different spectral signature from 
their neighboring background clutter pixels are identified as 
spectral anomalies. In such algorithms, no prior knowledge of 
the target spectral signature is used or assumed. In this section, 
the classical Reed–Xiaoli (RX) anomaly detector, kernel RX, 
SVDD, and subspace-based anomaly detector are discussed. 

RX ANOMALY DETECTION
In [6], a spectral anomaly detection algorithm was developed 
for detecting targets of unknown spectral characteristics 

against a background clutter with 
unknown spectral covariance. This 
a lgor i thm,  now commonly 
referred to as the RX anomaly 
detector, has been successfully 
applied in many hyperspectral 
applications and is considered as 
the benchmark anomaly detection 
algorithm for multispectral/hyper-
spectral data. The RX algorithm is 

a constant false alarm rate (CFAR) adaptive anomaly detector 
that is derived from the generalized likelihood ratio test 
(GLRT) [6]. The CFAR property allows the detector to use a 
single threshold to maintain a desired false alarm rate regard-
less of the background variation at different locations in the 
scene. It is based on the assumption that the background sta-
tistics can be modeled as a multivariate Gaussian distribution 
whose mean and covariance are estimated from the pixels in 
the image. Assuming a single pixel x x xx Rp

T p
1 2 f != 6 @

as the observation test vector consisting of p  bands, the out-
put of the RX algorithm is given by 

( ) ( ) ( ),RX x x C xb
T

b b
1 nn= - --t t t (1)
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[FIG1] Decision contours and surface plots of RX, KRX, and SVDD for two illustrative toy distributions: RX for (a) a single Gaussian 
background distribution and (b) a mixture of Gaussians background distribution; KRX (RBF kernel .1 0v = ) for (c) a single Gaussian 
background distribution and (d) a mixture of Gaussians background distribution; SVDD (RBF kernel .1 0v = , .C 0 1=  and support 
vectors are indicated by the red circles) for (e) a single Gaussian background distribution and (f) a mixture of Gaussians background 
distribution.

THIS ARTICLE MAINLY
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where bnt  is the estimated background clutter sample mean, 
and Cb
t  is the estimated background clutter covariance obtained 

from the test image. 
The RX algorithm is simply the square of the Mahalanobis 

distance between the test pixel and the local background 
mean. This is shown graphically for a toy example in Figure 
1(a) with a single Gaussian background distribution and Fig-
ure 1(b) with the background made of a mixture of two Gauss-
ian distributions. In this figure, the background data are 
assumed to be the blue dots and the rest of the space is consid-
ered to be the anomaly space. It is clear from Figure 1(b) that 
the conventional RX algorithm fails to tightly model the back-
ground distribution in the case of background being a mixture 
of two Gaussian distributions. 

The background mean and covariance matrix can be esti-
mated globally from the whole hyperspectral image or locally 
using a double concentric sliding window approach (see 
Figure 2). To estimate Cb

t  globally, a single Gaussian distribu-
tion is inadequate to model the whole background clutter dis-
tribution. Therefore, more advanced methods are proposed to 
model the nonstationarity of the background clutter such as 
using a mixture of multivariate Gaussian distributions, linear 
or stochastic mixture models or by some clustering tech-
niques that are used to segment the background into several 
clusters. On the other hand, the local background covariance 
matrix can be estimated by using a double concentric sliding 
window centered at each test pixel, consisting of a small inner 
window region (IWR) centered within a larger outer window 
region (OWR), as shown in Figure 2. The local background 
mean vector and covariance matrix are then computed from 
the spectral pixels falling within the OWR. The size of the 
inner window is assumed to be the size of the typical target of 
interest in the image. A guard band surrounding the IWR is 
sometimes used to prevent the target pixels from corrupting 
the calculation of the background OWR statistics. It should be 

pointed out that the local RX algorithm is computationally 
very intensive when compared with the global RX algorithm. 
This is due to the need to estimate and invert a large covari-
ance matrix at each location of the double concentric sliding 
window centered on each test pixel. 

Several variations of the RX detector that attempt to allevi-
ate the limitation of RX have been proposed in the literature 
[4], [7]. As an example, in [7], a modification to the RX algo-
rithm called subspace RX (SSRX) was outlined that is based on 
the principal component analysis (PCA) of the background 
covariance matrix. In the SSRX algorithm, several high-
variance background dimensions are deleted before applying
the RX algorithm, as these dimensions are assumed to capture 
non-normal background clutter variance. Another consider-
ation in RX implementation is the potential ill conditioning of 
the local covariance matrix due to the high correlation, high 
dimensionality of the hyperspectral data, and a limited back-
ground sample size. This ill conditioning is typically addressed 
by shrinkage methods [8] for regularizing estimates of a large 
covariance matrix. Regularization procedures such as PCA-
based regularization (discarding the contributions from the 
eigenvectors with low eigenvalues) or adding a scaled identity 
matrix ( )Im  to the background covariance matrix (a popular 
technique in the ridge regression procedure [8]) have been 
reported in the literature. For example, the output of the 
ridge-regularized RX algorithm is 

( ) ( ) ( ) ( ),RX x x C I xb
T

b b
1

reg n nm= - + --t t t (2)

where m  is a regularization parameter and I  is the identity 
matrix. Other types of regularization methods can be found in 
the literature dealing with the rank-deficient and ill-posed 
problems [9]. 

SUBSPACE-BASED ANOMALY DETECTION
Anomaly detection techniques formulated as modeling the whole 
(local) background as a subspace and eliminating it from every 
pixel have also been investigated in [10]. In subspace anomaly 
detectors the input spectra is projected onto a subspace, where 
bases are defined by some projection vectors. The projection sepa-
ration statistic for an input test pixel, ,x  is calculated using 

( ) ( ) ( ),s x I WW x#
b
T

bn n= - - -l t t  where W w w wm1 2f= 6 @ is 
a matrix with columns that are the m  projection bases obtained 
from the background samples, bnt  is the estimated mean of the 
background samples, and ( )W W W W# T T1= -  denotes the pseu-
doinverse of .W  The product WW#  is known as a projection 
operator and represents the background subspace. An anomaly is 
detected if the projection separation, ,sl  is greater than some 
threshold. There are several different methods to generate the 
projection basis to obtain the background subspace. The typical 
approach is to obtain the eigenvalue decomposition of the back-
ground covariance matrix and then select the significant eigen-
vectors (with large eigenvalue) that capture the background 
subspace without including the sensor noise statistics. Another 
approach to obtain the projection basis is to extract the 
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Inner Window
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[FIG2] An example of a double concentric sliding window with
guard band centered at pixel x.
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background endmembers from the image, locally or globally, 
using a hyperspectral unmixing procedure [11]. 

Both subspace-based and RX anomaly detectors try to sup-
press the background clutter subspace. For example, in the sub-
space anomaly detector, the background subspace is completely 
discarded by projecting the data onto a complement projection 
operator, ( )I WW#- , which is generated from the significant 
eigenvectors (with large eigenvalues) W  of the background 
covariance. However, in the case of RX the background subspace 
is suppressed by normalizing the significant eigenvectors of the 
back covariance matrix with their corresponding large eigenval-
ues and the remaining minor eigenvectors, representing the tar-
get subspace, are enhanced by normalizing them by their 
corresponding low eigenvalues. 

KERNEL RX ANOMALY DETECTION
In general, the background clutter is not Gaussian distrib-
uted, and it is not even practical to model it as a mixture of 
Gaussians due to insufficient training data and the lack of 
knowledge about the number of Gaussian mixtures. To 
address this problem, a nonlinear version of the RX algo-
rithm called kernel RX (KRX) was developed in [12]. The key 
concept of KRX is to express the original RX model in a high-
dimensional feature space ,F  where the decision regions in 
this new feature space will correspond to more complex deci-
sion regions than in the original input space. Given a nonlin-
ear mapping function ( )xU  that maps an input vector x  into 
a potentially much higher (possibly infinite) dimensional fea-
ture space. The output of the RX algorithm in this new fea-
ture space is represented as 

( ( )) ( ( ) ) ( ( ) ),RX x x C xb
T

b b
1 nnU U U= - --

U U U
t t t (3)

where CbU
t  and bn U

t  are the estimated covariance and mean of the 
background clutter samples in the feature space, respectively. 

Direct implementation of the RX algorithm in the feature 
space described by (3) is not possible due to the nonlinear 
mapping ,U  which produces a data space of high dimensional-
ity. To avoid implementing (3) explicitly, we need to kernelize 
it, which corresponds to expressing (3) in dot products form 
and evaluating it using the kernel trick concept [13]. The ker-
nel trick concept allows the computation of the dot products 
in the feature space using positive definite kernels defined on a 
pair of vectors 

( , ) ( ), ( ) .k x x x xi j i jG HU U= (4)

Equation (4) shows that the dot products in F  can be replaced 
by a kernel function ,k  a nonlinear function that can be easily 
calculated without identifying the nonlinear map .U  A com-
monly used kernel is the Gaussian radial basis function (RBF)

( , ) (( ) / ( ))expk x x x xi j i j
2 2v= - - , where 02v  is the kernel 

bandwidth parameter. Detailed information about the properties 
of different kernels and kernel-based learning theory can be 
found in [13]. 

The kernelized version of RX in the feature space (3) is given 
in [12] as 

( ) ( ) ( ),RX x k k K k kT
b

2
k x xb b= - -n n

-t
t t (5)

where ( ) ( )K X Xb b
TU U=t  denotes the centered kernel matrix 

for the mean-removed background pixels ( )XbU  in the feature 
space, ( ) ( )X xk b

T
x U U=  represents the so-called empirical ker-

nel map of the test pixel ( ),xU  and ( ) ( )k Xb
T

bb nU U=n tt  is the 
corresponding empirical kernel map of the background mean 

( ) .bnU t  Equation (5) can now be implemented with no knowl-
edge of the mapping function .U  The only requirement is a 
good choice for the kernel function ,k  which can produce a 
positive definite Gram matrix. 

Figure 1(c) and (d) shows the decision surfaces of KRX for 
the background clutter statistics made of a single Gaussian or a 
mixture of two Gaussian distributions. Comparing Figure 1(b) 
and (d), it is clear that when the background statistics is not a 
pure Gaussian, the kernel RX can provide the better nonlinear 
decision surfaces. Figure 3(a) shows a typical hyperspectral 
image, the Forest Radiance I data collection (FR-I), obtained 
from a hyperspectral digital imagery collection experiment 
(HYDICE) sensor, which consists of 210 bands across the whole 
spectral range from 0.4 to 2.5 μm and includes the visible and 
short-wave IR bands. Figure 3(b)–(d) shows the RX, KRX, and 
SVDD (discussed in the next section) anomaly detection results 

(a)

(b)

(c)

(d)

[FIG3] HYDICE hyperspectral FR-I image, RX, KRX, and SVDD 
anomaly detected images. (a) Sample band image (48th) from 
the FR-I image; detection results based on the local background 
statistics using a double concentric sliding window for (b) local 
RX algorithm, (c) local kernel RX algorithm (RBF kernel 40v = ), 
and (d) local SVDD algorithm (RBG kernel , .C16 0 05v = = ) .

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [38] JANUARY 2014

using the local background statistics obtained by a double con-
centric sliding window, respectively. Visually, it is clear that the 
KRX and SVDD do a better job in capturing and eliminating the 
background clutter. 

SVDD FOR ANOMALY DETECTION
There are two major issues with the RX algorithm that limit its 
performance. In many applications, it has been shown empiri-
cally that the Gaussian model for the background, even locally, 
provides an inadequate representation of the underlying distri-
bution [5] leading to poor false alarm performance. This is espe-
cially true when the local background contains multiple classes 
of material. In addition, the local RX algorithm is computation-
ally intensive when operating on a typical hyperspectral image, 
due to the need to estimate and invert large covariance matri-
ces. In [14], an anomaly detector was proposed based on SVDD 
[15], which is a single-class support vector machine (SVM) clas-
sifier that is able to directly estimate the support region for a 
given data set. SVDD avoids prior assumptions about the distri-
bution of the data and models the background by a minimum 
enclosing hypersphere. Spectral pixels that fall outside this 
hypersphere model are considered anomalies. The whole pro-
cess of finding the minimum enclosing hypersphere is per-
formed in a high-dimensional feature space using the ideas of 
kernel function [13] for efficient implementation. As in any ker-
nel-based detection algorithm, this high-dimensional hyper-
sphere in the feature space will correspond to very complex 
decision boundaries in the original input space. 

The main concept of the kernel SVDD for noise-free data 
is to find the smallest hypersphere in the induced feature 
space { ( ) : ( ) },Rx x cF 2 21U U= -  that includes the entire 
set of mapped training examples ( ) { ( ), , ..., }i N1X xU U= = ,
where c  is the center of the hypersphere in the feature 
space. Therefore, we need to solve the following constrained 
optimization problem: 

( )         ( ) ,     , ..., .min R i N1subject to x Fi !U = (6)

After applying the Lagrange multipliers ,ia  for , ...,i N1=  and 
Karush–Kuhn–Tucker conditions (see [15] for details), the dual 
problem can be written as 

( ) ( , ) ( , )minL k kx x x x
,

i i
i j

j i j
i

i ia a a= -/ /

     , , ..., , ,C i N0 1 2 1subject to i i
i

6# #a a= =/ (7)

where the parameter C  controls the tradeoff between the vol-
ume of the hypersphere and the errors. The SVDD decision rule 
for test data y  can be written in terms of the kernel function as 

( ) ( ) ( , ) ( , ) .SVDD k k k R2,y y y y x x x
,

i
i

i i
i j

j i j
2$a a a= - +/ /

(8)

This decision rule provides a measure of similarity between the
test pixel and its background. One can determine if a test pixel 

is an anomaly or not by applying a threshold on the decision 
statistic. Figure 1(e) and (f) shows the SVDD decision contours 
as well as the support vectors ( .1 0v =  and .C 0 1= ) for a toy 
example with a single and a mixture of two Gaussian back-
ground distributions. It is clearly seen that the SVDD algorithm 
can capture the statistics of the whole (noise-free) data set. Sim-
ilar decision statistic can also be derived for real training data 
(noisy samples) where a hypersphere is maximized to include 
most of the data, as shown in [15]. Although, SVDD and KRX 
are both implemented in the induced kernel feature space, but 
they are fundamentally different. SVDD is based on a discrimi-
native model, which does not assume any distribution for the 
input data. On the other hand, KRX is a generative model that 
represents the data as a Gaussian distribution in the kernel 
induced high-dimensional feature space. Comparing Figure 1(d) 
and (f), it can be seen that both algorithms can equally capture 
the mixed background distribution with complex nonlinear 
decision boundaries. 

SIGNATURE-BASED TARGET DETECTION
In some target detection applications, we have prior knowledge 
about the spectral characteristics of the desired targets. In these 
situations, the target spectral characteristics can be defined by a 
single target spectrum [16] or a target subspace [17]. Similarly, 
the background can be modeled statistically by a Gaussian dis-
tribution or with a subspace representing the whole or local 
background statistics. In this section, we review the concept of 
several classical target detection algorithms such as the linear 
spectral matched filter (SMF), matched subspace detector 
(MSD), adaptive subspace detector (ASD), and orthogonal sub-
space projection (OSP). The issues and challenges associated 
with their model assumptions and parameters are also dis-
cussed. A detailed discussion of the classical target detection 
techniques, specially SMF, and its practical implementation 
including the replacement model, is discussed in a companion 
article in this special issue [3]. 

SPECTRAL MATCHED FILTER
The model for SMF is expressed by 

: ,

: , ,

H

H a

target absent

target present

x n
x s n

0

1

=

= + (9)

where a  is the unknown target abundance measure (a 0=  when 
no target is present and a 02  when a target is present), 

s s ss p
T

1 2 f= 6 @  is the spectral signature of the target, and n
is zero-mean Gaussian random additive background clutter noise. 
The SMF model is based on the assumption that the background 
clutter noise has a Gaussian distribution ( , )0 CN b

t  and the target 
distribution is also a Gaussian ( , )as CN b

t  having the same covari-
ance statistics, but with a mean of ,as  where a  is an scalar abun-
dance value representing the target strength. Then, using GLRT, 
the output of SMF for a test input x  is given in [16] as 

( ) ,D x
s C s

s C x
T

b

T
b

H

H

1

1

SMF SMF
0

1

U h=
-

-

t

t
(10)
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where Cb
t  represents the estimated covariance matrix for the 

centered observation data and SMFh  represents a threshold. 

MATCHED SUBSPACE DETECTOR
In the matched subspace model, the target pixel vectors are 
expressed as a linear combination of target spectral signature 
and background spectral signature, which are represented by 
subspace target spectra and subspace background spectra, 
respectively. The hyperspectral target detection problem is 
expressed as two competing hypotheses H0  and H1

: ,

: ,

H

H

target absent

target present,

x B n
x S B n

0

1

g

i g

= +

= + + (11)

where S  and B  represent matrices whose p -dimensional inde-
pendent columns span the known target and background sub-
spaces, respectively; i  and g  are unknown vectors whose 
entries are coefficients that account for the abundances of the 
corresponding column vectors of S  and ,B  respectively; n  rep-
resents Gaussian random noise ( )n R p!  distributed as 

( , ),0 IN b
2v  where bv  is an unknown scalar value; and [ ]S B  is 

a concatenated matrix of S  and .B
The GLRT for the MSD model (11) was derived in [17], is 

given by 

( )
( )
( ) ,D x

x I P x
x I P x
T

tb

T
b

H

H

MSD
0

1

MSD U h=
-

-
h (12)

where P BBb
#=  is a projection matrix associated with the back-

ground subspace ;BG H [ ] [ ]P S B S B #
tb =  is a projection matrix 

associated with the target-and-background subspace .SBG H
( )D xMSDh  is compared to a threshold MSDh  to make a final deci-

sion about which hypothesis best relates to .x

ADAPTIVE SUBSPACE DETECTOR
The hypotheses H0  and H1  for the ASD detector are 

: ,

: ,

H

H

target absent

target present,

x n
x S n

0

1 n i

=

= + (13)

where S  spans the known target subspace; i  is an unknown 
vector, where entries are coefficients that account for the abun-
dances of the corresponding column vectors of ;S  the target 
signal Si  is scaled by n  (target strength); n  represents Gauss-
ian random noise distributed as ( , )0 CN b

2v  where Cb  is the 
background noise structure obtained from the training data, 
and v  represents an unknown scalar value associated with the 
test data. 

In model (13), x  is assumed to be a background noise, under 
H0  with 0n =  and a linear combination of a target subspace 
signal and a scaled background noise, distributed as 

( , )C ,SN b
2in v  under H1  with .02n  The GLRT for the prob-

lem described by (13) is given in [18] as 

( ) ( ) ,D x
C x

x C S S C S S C x
x b

b b b
T

T T T

H

H1

1

1 1 1

ASD
0

1

ASD U h=h

-

-

- - -

t

t t t
(14)
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[FIG4] Contour and surface plots of the decision boundaries for the (a)–(d) classical target detectors and (e)–(h) their corresponding 
RBF kernel versions on a two-dimensional nonlinear toy data set: in this toy example, the red star-shaped and blue circle-shaped 
symbols represent the target and background data points, respectively. (a) SMF. (b) MSD. (c) ASD. (d) OSP. (e) KSMF. (f) KMSD. 
(g) KASD. (h) KOSP.
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where Cb
t  is the maximum likelihood estimate of the covari-

ance, ,Cb  from the data and ASDh  represents a threshold. Equa-
tion (14) has a CFAR property and is also referred to as the 
CFAR ASD for subspace or multirank CFAR ASD in [18]. When 
the signal is coherent (S  is rank one) (14) is referred to as the 
adaptive coherence/cosine estimator (ACE), because (14) mea-
sures the cos2  of the angle between the whitened xu  and ,SG Hu

where x C x/
b

1 2= -u t  and .S C S/
b

1 2= -u t

ORTHOGONAL SUBSPACE PROJECTION
The OSP algorithm [19] is based on maximizing the signal-to-
noise ratio (SNR) of the target data in the subspace orthogonal 
to the background subspace. Rewriting the linear mixture 
model in terms of the desired target s  and the known back-
ground subspace B  as 

,x s B nt pa= + + (15)

where the columns of B  are the undesired background end-
members spectra, p  is an unknown column vector with ele-
ments that are the abundances associated with the background 
endmembers, ta  is the unknown abundance measure associ-
ated with the target spectrum, and n  is an additive noise. The 
output of the OSP classifier is given in [19] as 

,D q x s P xT T
bOSP OSP= = = (16)

where q s PT T
bOSP =
=  is the OSP operator consisting of a back-

ground spectral signature rejecter ( )P I BBb
#= -=  followed by a 

matched filter .s

KERNEL-BASED TARGET DETECTORS
The classical target detection techniques described so far are 
based on first- and second-order statistics and do not exploit 
higher-order statistics (nonlinearities). Similar to the kernel-
based anomaly detector, all the above classical target detectors 

can be extended to their corresponding nonlinear versions 
through the use of kernel-based machine learning [13]. The 
implicit exploitation of nonlinear features through kernels pro-
vides crucial information about a given data, which the learning 
methods based on linear models cannot achieve in general. The 
classical target detectors, discussed in the previous subsection, 
have all been extended to their nonlinear (kernel) versions. A 
comparative review of kernel-based target detectors and their 
performance compared with the corresponding linear versions 
is given in [20]. 

Figure 4 shows contour and surface plots of decision boundar-
ies for the classical target detectors and their kernel versions on a 
two-dimensional nonlinear toy data set. In the contour and sur-
face plots, data points for the desired target were represented by 
the star-shaped symbols and the background points were repre-
sented by light blue circles. As shown in Figure 4, the contours 
generated by the kernel-based detectors are highly nonlinear and 
naturally capture the dispersion of the data and more successfully 
separate the two classes, compared to the linear contours 
obtained by the classical target detectors. Therefore, the kernel-
based detectors clearly provide significantly improved discrimina-
tion over the conventional detectors for non-Gaussian data. 
Figure 5 illustrates the receiver operating characteristic (ROC) 
curves (probability of detection versus probability of false alarm) 
obtained by the classical target detectors and their corresponding 
kernel versions for the HYDICE hyperspectral FR-I image. Typi-
cally, the kernel versions of the target detectors outperform the 
linear versions, as seen in Figure 5. Among the kernel-based
detectors, kernel MSD (KMSD) and kernel ASD (KASD) outper-
form kernel OSP (KOSP) and kernel SMF (KSMF), mainly 
because targets in KMSD and KASD are better represented by the 
associated target subspace than by a single target spectral signa-
ture used in KOSP and KSMF. 

Another kernel-based binary classifier, the SVM [13], has 
been extensively used for hyperspectral image classification, 
where some labeled training data from the hyperspectral image 
itself is used to train the SVM classifier. However, SVM has not 
been very popular for target detection applications mainly due 
to the lack of data, especially for the target spectrum. For the 
background clutter spectra, there is often a period of target-free 
data collection. One possible approach to obtain sufficient train-
ing data for the target spectrum is to synthesize a large number 
of target spectral signatures using the MODTRAN atmospheric 
modeling tool as is done in [22] for the design of an invariant 
matched subspace detector. 

One advantage of kernel methods is that by using an appro-
priate composite kernel [23], the contextual information from 
multiple pixels on the target can be incorporated directly into 
the classifier or the kernel detector [24] without the need for any 
postprocessing [see the ROC curve in Figure 6 for an SVM target 
detector with a composite kernel (SVM-CK)]. 

CONTINUUM FUSION DETECTORS
One of the major problems with the target detection models is the 
variability of the model parameters in practical applications. For 
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[FIG5] ROC curves obtained by the classical target detectors
and their corresponding RBF kernel versions for the HYDICE 
hyperspectral FR-I image [Figure 3(a)] with several military 
targets. (Figure reproduced and used with permission from [20].) 
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example, in the case of the spectral matched filter, the laboratory 
target spectral signature used for target detection could be signifi-
cantly different in the measured test image. One approach is to 
model the target variation by a probability distribution (Gaussian) 
with unknown parameters (mean and variance) and then use 
GLRT to obtain the best-guess estimate of the unknown parame-
ters. Another approach is to use the continuum fusion (CF) detec-
tor proposed in [21] and [25]. As an example, to illustrate the 
concept of CF, a particular flavor of CF detector constructs optimal 
CFAR-SMF detectors for every known value of target parameter 
(mean) and then perform a CF-based fusion of the decision bound-
aries of these detectors into a single fused decision boundary. The 
toy example in Figure 7(a) depicts the hyperplanar decision 
boundaries for a CFAR-SMF detector for every allowed position of 
the target signature on a one-dimensional affine subspace (fixed 
straight line), shown as red balls. The blue ball represents a Gauss-
ian clutter distribution that has been whitened with the covari-
ance matrix estimated from the background pixels. Figure 7(b) 
shows the continuum CFAR-fused decision boundary obtained by 
the union of all the SMF detectors critical regions. The critical 
region of a CFAR-SMF detector is defined as the area to the right 
of its decision boundary (see Figure 7). Figure 7(c) illustrates the 
GLRT decision boundaries and the CFAR continuum fusion deci-
sion boundaries for several different threshold values. It should be 
pointed out that the CFAR-based SMF continuum fusion discussed 
above is only one possible flavor of CF. The real flexibility of CF 
arises from the infinite number of ways that individual decision 
boundaires from different type of detectors can be fused [21]. 

CHALLENGES ASSOCIATED WITH 
TARGET DETECTORS
In this section, we discuss issues associated with the model 
assumptions and their implementations for the classical target 
detection techniques. For example, as was discussed in previous 

sections, in the case of SMF or OSP, a fixed laboratory target sig-
nature is assumed in the model, which could be significantly 
different from the actual target test pixels in the scene. This dif-
ference involves understanding a myriad of interactions of the 
target signal with other pixels (adjacency effects) and variations 
in illumination that depend on many parameters with unknown 
values. These include the relative contributions of the sky and 
sun and the amounts of atmospheric gases, vapors, and aerosols 
that alter spectral signals before being acquired by the sensor. 
For this reason, researchers have proposed using a preprocess-
ing stage to estimate and compensate for the atmospheric 
effects on the data to transform the known target spectrum and 
measurement data into a common domain where a target detec-
tion algorithm can be applied. 
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[FIG7] (a) Hyperplanar decision boundaries for a CFAR SMF solution to the affine target subspace problem, (b) continuum-fused CFAR 
decision surface for the affine target subspace problem, and (c) GLRT versus CFAR decision surfaces (at different threshold values) for 
the affine target subspace problem. (Figure reproduced and used with permission from [21].) 
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On the other hand, some researchers have proposed to use 
multiple target signatures to try to capture the variability in the 
target signature. By using physics-based modeling and the 
MODTRAN atmospheric-modeling tool [26], meaningful target 
spectral signatures can be generated that can capture the target 
signature appearance over a wide range of atmospheric condi-
tions. But, these target signatures still need to be represented 
by a subspace as required in the MSD and ADS models. For 
example, in [22] and [27], a large number of synthetic target (or 
background) signatures using MODTRAN under various atmo-
spheric conditions were generated, which were then used to 
construct an invariant target (or background) subspace by 
retaining only the significant eigenvectors of the target (or 
background) covariance matrix with eigenvalues above the sen-
sor noise level. 

Furthermore, an important consideration in SMF and ASD 
implementation is the potential ill conditioning of the covari-
ance matrix due to the high correlation, high dimensionality of 
the hyperspectral data, and a limited background sample size 
[28], [29]. Representing the inverse covariance matrix in terms 
of its eigenvector-eigenvalue decomposition, it becomes clear 
that the behavior of the inverse covariance matrix depends 
heavily on the small eigenvalues, which could render it unsta-
ble. For example, to reduce SMF sensitivity to statistical and 
numerical errors, eigenvectors corresponding to eigenvalues 
below an appropriate condition number or estimated sensor 
noise level can be discarded or a scaled identity matrix ( )Ib  is 

added to the background clutter covariance before inverting, 
which is equivalent to including an l2 -norm smoothness pen-
alty (regularization) term on the matched filter coefficients dur-
ing the design of the SMF [30]. A regularized matched filter is 
given by 

( )
( )

( )
,D x

s C I s

s C I x
T

b

T
b

1

1

RegSMF
b

b
=

+

+
-

-

t

t
(17)

where b  is a regularization parameter related to the sensor 
noise and I  is the identity matrix. The regularization process 
acts as a Gaussian prior on the matched filter coefficients. As 
shown in [30], for small b  values, the SMF filter coefficients 
can have extreme negative and positive values, and at large b
values, the filter coefficients tend to become less oscillatory and 
smoother. 

SPARSE REPRESENTATION FOR TARGET DETECTION
Sparse representation classifiers (SRCs) express a signal as a lin-
ear combination of very few atoms from an overcomplete dic-
tionary consisting of a set of training data from all the classes. 
The resulting sparse code can reveal the class information if sig-
nals from different classes lie in different subspaces. 

SPARSITY MODEL
In the sparsity-based HSI classification model, the spectral sig-
natures of pixels belonging to the same class are assumed to 
approximately lie in a low-dimensional subspace. Suppose we 
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[FIG8] The SRC process for target detection. It shows a structured dictionary consisting of a target and a background subdirectories.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [43] JANUARY 2014

have K  distinct classes and the k th class has Nk  training sam-
ples .a , ,j

k
j N1 kf=

" ,  Let x  be a p -dimensional hyperspectral pixel 
observation. If x  belongs to the k th class, then its spectrum 
approximately lies in a low-dimensional subspace spanned by 
the training samples in the k th class. 

Based on the above sparsity assumption, in SRC [31] an 
unknown test sample is modeled to lie in the union of the K
subspaces associated with the K  classes. By combining the 
class subdictionaries ,A , ,

k
k K1 f=" ,  a test sample x  can be writ-

ten as a sparse linear combination of all the training samples as 

,

x A A A

A A A

K K

K

K

1 1 2

1

1

2

A

g

g h

a a

a

a
a

a

= + + +

= =

a

6 >@ H
1 2 3444 444

:

(18)

where A  is a p N#  structured dictionary consisting of training 
samples from all classes with N N

k

K
k1

=
=

/  and a  is an 
N-dimensional sparse vector formed by concatenating the 
sparse vectors , ,

k
k K1a f=" ,  associated with each class subdic-

tionary. Note that, ideally, if x  belongs to the k th class, then 
, , , , .j K j k10j 6 f !a = =

Given a structured dictionary ,A  the unknown sparse vector 
a  satisfying x Aa=  can be obtained from the following spar-
sity-driven optimization: 

,arg min subject to x A0 2 0#a a a e= -t (19)

where 0a  denotes 0, -norm, which is defined as the number 
of nonzero entries in the vector a  (in the Bayesian learning 
framework it represents a sparsity prior on a ), and 0e  is an 
approximation error tolerance. The aforementioned optimiza-
tion problem (19) can be approximately solved by any greedy 
pursuit algorithm [32]. Furthermore, the optimization problem 
(19) is NP-hard. But, it can be relaxed by replacing the 0, -norm 
with the 1, -norm

i

N
i1 1

a a=
=
/  and solved by an standard 

convex optimization technique [33]. 
The class label of x  can be obtained directly from the char-

acteristics of the recovered sparse vector at , which is deter-
mined by the class that gives the minimal residual error 

( ) ,arg minr x x A
, ,

k

k K

k k

1 2
a= -

g=
t (20)

where kat  denotes the portion of the recovered sparse coeffi-
cients corresponding to the atoms in the k th class. 

In the case of target detection, typically the dictionary for the 
SRC consists of the training samples from the target and back-
ground subdictionaries represented by ,A A At b= 6 @  as shown in 
Figure 8. The sparse representation vector [ ]t

T
b
T Ta a a=  satisfy-

ing x Aa=  can be obtained by solving the previous optimization 
problem (19), where ta  and ba  represent the sparse coefficient 
vectors corresponding to the target and background dictionaries, 
respectively. Once the sparse coefficient vector at  is obtained, the 
class of the test pixel x  can be determined by comparing the 
residuals ( )r x x At t t 2

2a= - t  and ( ) .r x x Ab b b 2
2a= - t

STRUCTURED SPARSE PRIORS
The classification performance of SRC can be improved by 
incorporating the contextual information from the neighboring 
pixels into the SRC classifier. If we have multiple pixels on the 
target, the contextual information can be incorporated into the 
SRC algorithm by imposing richer sparsity priors (structured 
sparsity priors) or structural penalty constraints in the SRC 
optimization. One of the simplest approaches is to use a joint 
sparsity (collaborative) model, as shown in [35], assuming that 
the underlying sparse vectors associated with the neighboring 
pixels share a common sparsity pattern. In the joint sparsity 
model, a block of T  pixels [ ]X x x xT1 2 f=  can be jointly rep-
resented for a given dictionary as 

,arg min subject to X A F
2

2row,0 # eX X X= -t (21)

where . F  represents Frobenius norm, the notation row,0X
denotes the number of nonzero rows of X  and 2e  is an error 
tolerance. Simultaneous greedy algorithms [32] can be used to 
obtain an approximation to (21). The row-sparsity norm 

row,0X  can also be replaced by ,1 2X , which is an l ,1 2 -norm 
defined as the sum of the l2 -norms of the rows of X , to convert 
the NP-hard problem (21) into a convex optimization task. 

Figure 6 shows the ROC curves for several target detectors 
on the HYDICE hyperspectral FR-I image. As seen in Figure 6, 
the SVM-CK and sparsity based with an l2 -norm smoothing 
penalty on the reconstructed data outperform the classical 
signature-based target detection techniques. The experimental 
implementation for each algorithm and results for couple of 
other hyperspectral images can be found in [34]. 

DICTIONARY CONSTRUCTION
Another aspect of the problem that requires careful attention is 
how to construct appropriate dictionaries Ab  and At . Global 
dictionaries for target and background can be designed using a 
given training data. However, in target detection applications, 
there is usually a lack of training data, especially for the target 
class. By using physical models and the MODTRAN atmospheric-
modeling program [26], target spectral signatures can be gener-
ated that can capture the target signature appearance over a 
wide range of atmospheric conditions [22], [27]. These syntheti-
cally generated spectral signatures can then be used to con-
struct a redundant target dictionary for the SRC classifier, 
which could be invariant to environmental variations. The back-
ground dictionary is often modeled by randomly selecting some 
pixels from the test image itself. Furthermore, given sufficient 
training samples for the background and target classes, a dic-
tionary design technique such as the K-SVD algorithm [32], 
which alternately minimizes sparsity of the representation and 
updates the dictionary’s atoms to better fit the data, can be used 
to construct dictionaries used by SRC. 

CONCLUSIONS
This article presents a brief overview of recent target detection 
techniques in HSI processing. The major challenges in target 
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detection techniques are still the need for developing more 
robust classification techniques, constructing better models, and 
designing more effective preprocessing methods that can detect 
targets in very difficult scenarios such as subpixel targets, camou-
flaged targets, and hidden targets underneath trees. Estimating 
the model parameters with limited training data is also a major 
obstacle in developing robust target detectors. The usefulness of 
using physics-based synthetically generated spectral signatures to 
supplement the real data for designing better detection algo-
rithms are currently under investigation by many researchers. 
More investigation is needed to fully evaluate the performance of 
the machine-learning-based target detection techniques from 
laboratory experiments to real field trials. Fusion of multiple tar-
get detection algorithms as well as using hyperspectral data to 
complement other sensors are still being investigated. Kernel-
based target detection techniques have shown improvement over 
the linear techniques, but there is definitely a need to further 
study nonlinear approaches. We have also not reported the effect 
of band selection, dimensionality reduction, or compressed sens-
ing techniques on the performance of target detection methods, 
however, some primary results can be found in [36]. 
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T
he technological evolution of optical sensors over the 
last few decades has provided remote sensing analysts 
with rich spatial, spectral, and temporal information. 
In particular, the increase in spectral resolution of 
hyperspectral images (HSIs) and infrared sounders 

opens the doors to new application domains and poses new meth-
odological challenges in data analysis. HSIs allow the characteri-
zation of objects of interest (e.g., land-cover classes) with 
unprecedented accuracy, and keeps inventories up to date. 
Improvements in spectral resolution have called for advances in 

signal processing and exploitation algorithms. This article focuses 
on the challenging problem of hyperspectral image classification, 
which has recently gained in popularity and attracted the interest 
of other scientific disciplines such as machine learning, image 
processing, and computer vision. In the remote sensing commu-
nity, the term classification is used to denote the process that 
assigns single pixels to a set of classes, while the term segmenta-
tion is used for methods aggregating pixels into objects and then 
assigned to a class. 

One should question, however, what makes HSI so distinctive. 
Statistically, HSI are not extremely different from natural gray-
scale and color photographic images (see [1, Ch. 2]). Grayscale 
images are spatially smooth: the joint probability density function 
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(PDF) of the luminance samples is highly uniform, the covari-
ance matrix is highly nondiagonal, the autocorrelation functions 
are broad, and have generally a /f1  band-limited spectrum. In the 
case of color images, the correlation between the tristimulus val-
ues of the natural colors is typically high. While the three tristim-
ulus channels are equally smooth in generic red/green/blue 
(RGB) representations, opponent representations imply an 
uneven distribution of bandwidth between channels. Despite all 
these commonalities, the analysis of HSI turns out to be more 
difficult, especially because of the high dimensionality of the pix-
els, the particular noise and uncertainty sources observed, the 
high spectral redundancy, and the typically nonlinear relations 
observed between spectral channels as well as with the corre-
sponding material. Such nonlinearities can be related to a pleth-
ora of factors, including the multiscattering in the acquisition 
process, the heterogeneities at subpixel level, as well as the 
impact of atmospheric and geometric distortions. These charac-
teristics of the imaging process lead to distinct nonlinear feature 
relations, i.e., pixels lie in high-dimensional complex manifolds. 
The high spectral sampling of HSI (the bands usually cover nar-
row portions of the electromagnetic spectrum, typically 5–10 nm)
also leads to strong collinearity issues. Finally, the spatial variabil-
ity of the spectral signature increases the internal class variability. 
All of these factors, in conjunction to the few labeled examples 
typically available, make HSI image classification a very challen-
ging problem. As a result, the accuracy obtained with standard 
parametric classifiers commonly used for multispectral image 
classification is typically compromised when applied to HSI [2]. 

Many of these limitations have been recently addressed under 
the framework of statistical learning theory (SLT) [3]. SLT is a 
general framework for learning functions from data, which 
reduces to finding a linear function defined in a high- (eventually 
infinite) dimensional Hilbert feature space f H!  that learns the 
relation between observed input-output data pairs ( , ),x y1 1 ,f
( , )x y X Y#!, , , and that generalizes well. Generalization is the 
capability of a method to extrapolate to unseen situations, i.e., the 
function f should accurately predict the label y Y!)  for a new 
input example x X!) . Generalization has recurrently appeared 
in statistics literature for decades under the names of bias-vari-
ance dilemma, capacity control, or complexity regularization 
tradeoff. The underlying idea is to constrain too flexible functions 
to avoid overfitting the training data. 

The SLT framework formalizes this intuition [3] and seeks 
for prediction functions that optimize a functional Lreg  that 
takes into account both an empirical estimation of the training 
error (loss), Lemp , and an estimate of the complexity of the 
model (or regularizer), ( )fX :

(

( , , ( )) ( ),

)

V

f

x y f x f

LL

i i ii 1

reg emp m

m

X

X
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+=
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where V  is a loss function acting on the ,  labeled samples, and 
m  is a tradeoff parameter between the cost and the regulariza-
tion. Different losses and regularizers can be adopted for solving 
the problem, involving completely different families of models 

and solutions. To ensure unique solutions, many SLT algorithms 
use strictly convex loss functions. The regularizer ( )fX  limits 
the capacity of the classifier to minimize Lemp  and favors 
smooth functions. 

The hyperspectral image processing community has contrib-
uted to the design of specific loss functions and regularizers to 
take the most out of the acquired images. For example, regular-
ization appears explicitly in many HSI classifiers when trying to 
impose the spatial homogeneity of images, when including the 
wealth of user’s labeling in active learning (AL), or when 
exploiting the information contained in the unlabeled pixels to 
better describe the image manifold in semisupervised learning. 
Classifiers should also be robust to changes in the image repre-
sentation: small perturbations of pixels and objects in the image 
manifold should not produce big differences in the classifica-
tion. This is why the inclusion of proper image representations 
and invariances is also an active field. 

ADVANCED REGULARIZED IMAGE CLASSIFICATION
Before HSI, most of the classifiers used in remote sensing were 
parametric, such as Gaussian maximum likelihood or linear dis-
criminant analysis. These methods, based on the estimate of the 
covariance matrix, were successful when dealing with early multi-
spectral images, whose dimensionality was usually comprised 
between four and ten bands. HSI changed the rules, as the 
increased dimensionality of pixels raised to hundreds. Standard 
parametric methods became either unfeasible or unreliable, since 
estimating the class-covariance matrices requires many labeled 
samples, which are usually not available. For that reason, research 
turned to include regularization, either explicitly through Tik-
honov’s terms in the involved covariance matrices, or by perform 
classification in a subspace of reduced dimensionality [4], [5]. 

Although successful, parametric models make strong assump-
tions about the normality of the class conditional PDFs or about 
the linearity of the problem. Due to the complexity of HSI, such 
assumptions rarely hold, which encouraged research towards 
nonparametric and nonlinear models. Several approaches have 
been introduced in the last decade in the field of hyperspectral 
image classification: kernel methods and support vector 
machines (SVMs) [2], sparse multinomial logistic regression [6], 
neural networks [7], and Bayesian approaches like relevance vec-
tor machines [8] and Gaussian processes classification [9]. Never-
theless, the SVM has undoubtedly become the most widely used 
method in HSI classification research [10]. Unlike other non-
parametric approaches, such as regularized radial basis function 
(RBF) neural networks, SVM naturally implements regularization 
through the concept of maximum margin: given a linear classifi-
cation function ( )f x w x b= +< , maximizing the linear separabil-
ity between classes is equivalent to minimize the 2, -norm of 
model weights w  used as regularizer, ( )f w 2

2X = . Nonlinearity 
is also implemented via reproducing kernels, which allows the 
ability to work in high-dimensional Hilbert spaces implicitly, 
while still resorting to linear algebra operations [2]. 

In spite of those desirable properties, the effectiveness of SVM 
rapidly turned out to be insufficient to exploit the rich information 
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contained in HSI. In all methodologies that follow, the functional 
to be optimized will consider additional information such as the 
one contained in unlabeled samples, ancillary data, or distinct sig-
nal characteristics. Such heterogeneous information is typically 
included in the HSI classifiers through additional regularizers. 

REGULARIZATION WITH UNLABELED SAMPLES
Recently, researchers started to exploit the abundant unlabeled 
information contained in the image itself, and new forms of 
regularization and priors were introduced. This is the field of 
semisupervised learning (SSL) [11]–[13] [see Figure 1(b)], 
where the minimization functional is modified to take into 
account the structure of the hyperspectral image manifold. Usu-
ally, semisupervised algorithms modify the decision function of 
the classifier by adding an extra regularization term uX  that 
acts on both labeled and unlabeled examples 

( ) ( ) .f fL L u ureg emp m mX X+ +=

Several strategies to design the regularizer have been presented. 
One may use the graph Laplacian as a metric on the predictions to 
build uX . Since regularization is performed on a proximity graph, 
the assumption enforced is that decisions on neighboring pixels in 
the data manifold should be similar [14]. Another possibility con-
siders regularizers that enforce wide and empty SVM margins 
[11]. Other strategies deform the kernel function by changing the 
metric induced using the unlabeled samples [13], [15]. Table 1 
summarizes the different approaches in semisupervised learning.

We evaluate the performance of semisupervised algorithms in 
an Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 
image acquired over the Kennedy Space Center (KSC), in Florida 
in 1996, with a total of 224 bands of 10-nm bandwidth with center 
wavelengths from 400 to 2,500 nm. The data was acquired from an 
altitude of 20 km and has a spatial resolution of 18 m. After 
removing low signal-to-noise ratio (SNR) bands and water absorp-
tion bands, a total of 176 bands remains for the analysis. We 
merged some subclasses to deal with a more balanced problem of 
ten classes. The high dimensionality and number of classes and 
subclasses pose challenging problems for the classifiers, especially 
when few labeled examples are available. 

Figure 2 illustrates classification results for cluster kernels, 
probabilistic mean map kernel, label propagation, Laplacian 
SVM (LapSVM), and semisupervised neural networks (SSNNs). 

We used 200, =  labeled pixels (20 per class) and ,u 1 000=

unlabeled pixels. LapSVM, cluster kernels, and mean map ker-
nels perform similarly, and all improve the results of the label 
propagation whose training was particularly difficult in this 
high-dimensional setting. More homogeneous areas and better 
classification maps are observed in general for the mean map 
and bag kernels, and particularly for the SSNN, which efficiently 
deals with complex marsh areas [bottom right part of the classi-
fication map in Figure 2(g)] and cope with large scale data sets. 

REGULARIZATION VIA USER’S INTERACTION
Another possibility to cope with small sample problems is to pro-
vide additional labeled examples. This is possible since HSI 
represent land surfaces, usually physically reachable or that can 
be displayed in an image processing software. Therefore, the new 
samples can be collected either by photointepretation of the 
images (only if the classes can be recognized on screen) or by 
organizing field campaigns. However, since providing additional 
samples is costly, the samples to be labeled must be selected care-
fully. To this end, AL [16], [17] [see Figure 1(c)] has gained popu-
larity in recent years: rather than proceeding by random 
sampling or stratification (i.e., sampling according to a measure 
of the expected variability within a class), AL uses the outcome of 
the current model to rank the unlabeled pixels according to their 
expected importance for future labeling. The aim is to detect the 
most difficult (and diverse) pixels for the current classifier. The 
top-ranked pixels are then screened by a human operator, who 
provides the labels, enlarging the training set. With the enlarged 
training set, a new improved classifier is built and the process is 

Supervised After SSL After AL

(a) (b) (c)

[FIG1] Regularization of models with unlabeled samples: 
(a) purely supervised solution, (b) semisupervised solution 
exploiting low-density areas, and (c) active learning solution, 
where three new samples are labeled by a user.

[TABLE 1] SUMMARY OF SEMISUPERVISED ALGORITHMS USED IN HSI CLASSIFICATION.

ASSUMPTION MODEL IDEA
LOW DENSITY TSVM [11] LOOK FOR THE EMPTIEST MARGIN.

MANIFOLD LABEL PROPAGATION [12] SPREAD CLASS INFORMATION ON THE GRAPH OF LABELED/UNLABELED (NEARBY SAMPLES ARE CLASSIFIED IN 
THE SAME CLASS).

LapSVM [14] SVM HINGE LOSS PLUS LAPLACIAN EIGENMAPS FOR MANIFOLD REGULARIZATION: PIXELS CLOSE IN THE INPUT 
SPACE ARE ALSO CLOSE IN THE GRAPH (NEARBY SAMPLES ARE MAPPED CLOSE TOGETHER).

SSNN [7] NEURAL NETWORK TRAINED WITH GRADIENT DESCENT REPLACES SVM, GRAPH REGULARIZATION WITH LOSS
THAT FORCES SIMILAR PIXELS TO BE MAPPED CLOSELY AND DISSIMILAR ONES TO BE SEPARATED.

CLUSTER CLUSTER KERNEL [13] INCREASE THE SIMILARITY MEASURE (KERNEL) IF SAMPLES FALL IN THE SAME CLUSTER, THEN RUN STANDARD SVM.

MEAN MAP KERNEL [15] INCREASE SIMILARITY IF SAMPLES ARE MAPPED CLOSE TO CENTROIDS IN HILBERT SPACE, THEN RUN STANDARD SVM.
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iterated. Since AL focuses on difficult areas, it boosts the perfor-
mances with fewer samples than those required by random sam-
pling. Table 2 includes a taxonomical classification of the field of 
active learning. The section “Adapting the Classifier” will illus-
trate an example of active learning model regularization for the 
specific task of adapting classifiers to multiple scenes. 

REGULARIZATION THROUGH SPARSITY PROMOTION
Despite their high dimensionality, hyperspectral pixels belonging 
to the same class typically lie in a low-dimensional subspace. This 
observation has been recently used in sparse signal representa-
tions. Here, the assumption is that pixels can be represented 
accurately as a linear combination of a few training samples from 
a structured dictionary. 

Note the connection with SVMs that embed the dictionary (the 
training samples) into a high-dimensional feature space H . The 
use of the hinge loss in the SVM functional induces a sparse solu-
tion, i.e., few training examples are selected. Recently, sparse ker-
nel methods have been presented, such as the kernel matching 
pursuit, the 1, -SVM, the kernel basis pursuit, or the generalized 
LASSO. In all of these, the dictionary functions are the kernels 
centered around the selected “support vectors.” Alternatively, in 
[18], several sparse kernel approaches have been presented with a 
different philosophy: the target pixel is the test pixel itself, not a 
similarity evaluation, and the dictionary is composed by the train-
ing pixels in the feature space. In this article, a basis projection 
(BP) approach is used to promote sparsity with ,w 1X =  as a 
relaxation of the more computationally demanding problem 

RGB SVM (81.11%, 0.82) Bag Kernel (83.44%, 0.83) Mean Map (85.21%, 0.84)

(a) (b) (c) (d)

Label Prop. (70.57%, 0.64) LapSVM (83.11%, 0.83) SSNN (87.89%, 0.87)

(e) (f) (g)

[FIG2] (a) RGB composition and classification maps with (b) SVM, (c) cluster (or bag) kernels, (d) probabilistic mean-map kernel, (e) label 
propagation, (f) LapSVM, and (g) SSNN for the KSC image ( 200, = , ,u 1 000= ). Overall accuracy and kappa statistic are given in brackets. 

[TABLE 2] SUMMARY OF AL ALGORITHMS [16].

CRITERION CLASSIFIER UNCERTAINTY DIVERSITY MODELS TO TRAIN
EQB ALL AGREEMENT OF A COMMITTEE # p MODELS

AMD ALL AGREEMENT OF A COMMITTEE # p MODELS

MS SVM DISTANCE TO SVM MARGIN # ONE SVM

CSV SVM DISTANCE TO SVM MARGIN SPECTRAL DISTANCE TO CURRENT SVS ONE SVM +  DISTANCES TO 
SVS

MOA SVM DISTANCE TO SVM MARGIN ANGULAR DIFFERENCES ONE SVM +  DISTANCES TO
ALREADY SELECTED SAMPLES

MCLU-ECBD SVM DISTANCE TO SVM MARGIN DIFFERENT CLUSTER ASSIGNMENT ONE SVM +  NONLINEAR
CLUSTERING OF c  SAMPLES

KL-Max PROB. OUTPUT DIVERGENCE OF PDF IF ADDING
THE CANDIDATE

# ( )c 1- MODELS

BT PROB. OUTPUT DIFFERENCE IN POSTERIOR OF
MOST CONFIDENT CLASSES

# ONE MODEL

c : Number of candidates.
p : Members of a committee of learners.
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induced by using the 0, -norm. To solve the BP problem, greedy 
algorithms, such as the orthogonal matching pursuit (OMP) and 
the subspace pursuit (SP) methods, can be used. The dictionary 
can be obtained offline or from the same image. The classification 
can be additionally improved by incorporating the contextual 
information from the neighboring pixels into the classifier (see the 
next section). 

In the example illustrated in Figure 3, we compare the perfor-
mance of the linear (SP, OMP) and kernel (KSP, KOMP) sparse HSI 
classifiers introduced in [18]. The sparseness factor was tuned for 
best performance. We also included a linear SVM and the o-SVM 
using an RBF kernel, in which the parameter ( , )0 1!o  controls 
the degree of sparsity. The RBF v  parameter was tuned by stand-
ard tenfold cross-validation. Figure 3 shows the results for these 
methods and different number of training samples in the standard 
AVIRIS Indian Pines hyperspectral image (220 spectral channels 
and spatial resolution 20 m, shown in Figure 4). This is the stand-
ard benchmark hyperspectral image, which is used here to allow 
comparison with results in [18]. We split the data into a training 
set (20% of the available labeled pixels) and a test set (80%). We 
trained the classifiers for different rates {1, 5, 10, 15, 20, 25, 30}% 
of the training set, and show results for the test set that remained 
constant. Nonlinear methods show a much better performance 
over linear approaches. In the linear case, SP clearly outperforms 
the rest, but when the nonlinearity is included all methods per-
form very similarly. 

SPATIAL-SPECTRAL IMAGE CLASSIFICATION
HSI live in a geographical manifold, in the sense that spatially 
neighboring pixels carry correlated information and that images 
are usually smooth in the spatial domain [1, Ch. 2]. Accounting 
for spatial smoothness 1) provides less salt-and-pepper classifica-
tion maps, 2) reveals the size and shape of the structure the pixel 
belongs to, and 3) allows the discrimination between structures 
made of the same materials, but belonging to different land-use 
types. Spatial regularization has been widely used to improve clas-
sification [21]. The joint exploitation of both spectral and spatial
information considers that either the loss, the regularizer, or both 
depend on the spatial neighborhood of a pixel [22]. In the next 
subsections we review the field of spatial-spectral classification, 
whose major developments are summarized in Table 3.

SPATIAL FEATURE EXTRACTION
A simple yet effective way to regularize for spatial smoothness is 
to enrich the input space with features accounting for the 
neighborhood of the pixels. This is usually done by using mov-
ing windows or adaptive filters applied to the spectral bands. 
These filtered images are then used to learn the classifier. 
Standard filters based on occurrence or co-occurrence, morpho-
logical operators, Gabor filters, or wavelets decompositions gen-
erally provide significant improvements over purely spectral 
classifiers. Among them, morphological filters are the most 
promising. In [23], filtering was performed at many scales and 
an extended morphological profile (EMP) was used for classifi-
cation. Proceeding in a multiscale fashion enables the adaptive 

definition of the neighborhood of a pixel according to the struc-
ture it belongs to. Filtering in HSI is more challenging than in 
multispectral images, and one typically resorts to compute the 
EMP based on only a few principal components (PCs) using 
morphological reconstruction operators. All of the features are 
then fed to a classifier, either alone [23] or combined with the 
original spectral information [24]. Furthermore, feature selec-
tion [25] or extraction [23] can be used to find the relevant fea-
tures. Recently, connected tree-based morphological operators 
have been investigated for the analysis of HSI [26]. These so-
called attribute filters extract thematic attributes of the con-
nected components of an image which are thresholded 
according to their geometry (area, length, shape factors), or tex-
ture (range, entropy). The multiscale version, extended mor-
phological attribute profile (EMAP), has been also introduced. 

In Figure 5, the approaches based on mathematical morphol-
ogy (EMP and EMAP extracted from the first four PCs) are used 
for classification of ROSIS-03 data from an urban area in Pavia, 
Italy. We selected this image to illustrate the capabilities of sev-
eral spatial-spectral classifiers since urban areas monitoring at 
very high resolution typically requires the extraction of direc-
tional, rotational, and scale features from objects. A significant 
improvement in terms of classification accuracies with respect to 
the spectral SVM was achieved by applying the EMAP with four 
different attributes on the image (area and diagonal of the 
bounding box of connected components, moment of inertia, and 
standard deviation; see [26]). On the other hand, some redun-
dancy was observed in the original 144-dimensional filter vector 
of EMAP. Therefore, decision boundary feature extraction (DBFE) 
was applied on it. After extraction with DBFE, the accuracies 
improved significantly ( %5+ ), thus confirming the importance 
of feature extraction routines. Finally, comparison with compos-
ite kernels (see the section “Advanced Spatial-Spectral Classifi-
ers” on the next page and in  [19] and [20]) yielded improved 
classification accuracy, but with a strong change of response in 
the right part of the image, where much more soil is predicted.  
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[FIG3] The performance measure with the estimated Cohen’s 
kappa statistic, l , for different sparsity-promoting classifiers.
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SPATIAL-SPECTRAL SEGMENTATION
Another approach for the inclusion of spatial information is 
through image segmentation, typically using watershed, mean 
shift, and hierarchical segmentation [21]. After segmentation, a 
supervised scheme assigns the pixels in the segments to the classes. 
Two approaches are the mostly used: in the first, the regions are 
treated as input vectors in a supervised classifier. In the second, 
regions are considered as basins to postprocess the class member-
ships attributed by a pixel-based classifier within each segment. 

The reverse view on the problem is proposed in [27], where 
a supervised classifier is used to produce confidence values for 
each pixel. Then, pixels with maximal confidence are used as 
seeds for a region growing algorithm. In [28] segmentation and 
classification are linked by user-provided labels: working with a 
hierarchical segmentation of the data, the labels provided are 
used to isolate coherent clusters, both spatially and thematic-
ally, thus ending with the good segmentation and the labels of 
the segments. The number of queries is minimized with AL. 

In Figure 4, two approaches based on segmentation and classi-
fication with majority voting and markers are applied to a 220-
bands AVIRIS data set over Indian Pines (Indiana, United States). 
Significant improvement in terms of overall classification accura-
cies and kappa statistic were achieved over the pixel-based SVM 
classifier. Using markers provided the best accuracies: a %1+
improvement over the simple majority voting and more than 

%13+  over the traditional pixel-based SVM classifier. 

Furthermore, as seen in Figure 4, it is clear that the classification 
and segmentation approaches provide a significantly more uni-
form classification map when compared to the purely spectral SVM 
classification map. 

ADVANCED SPATIAL-SPECTRAL CLASSIFIERS
The main problem with spatial-spectral feature extraction 
approaches is the possibly high dimensionality of the feature 
vectors used to feed the classifier. This was alleviated in [19] 
where dedicated kernels for the spectral and spatial informa-
tion were combined. The framework has been recently 
extended to deal with convex combinations of kernels through 
multiple-kernel learning [25] and generalized composite ker-
nels [20]. In both cases, however, the methodology still relies 
on performing an ad hoc spatial feature extraction before ker-
nel computation. Other alternatives in the literature consid-
ered the definition of graph kernels that capture multiscale 
higher-order relations in a neighborhood without computing 
them explicitly [29], and the modification of the SVM to seek 
for the spatial filter that maximizes the margin [30]. 

A final alternative is to include contextual information with 
Markov random fields (MRFs), which naturally include a spa-
tial term on class smoothness in the energy function. How-
ever, in the high-dimensional context of HSI, the standard 
application of the neighbor system definition makes the prob-
lem computationally intractable, and therefore recent works 
have focused on joining MRF spatial priors and discriminative 
models in HSI classification [31], [32]. An excellent review of 
MRF spatial-spectral methods can be found in [33]. 

ADAPTATION AND INVARIANCES
One of the greatest challenges of modern HSI classification is the 
adaptation of classifiers between acquisitions that differ either by 
the zone they represent and/or the acquisition conditions such as 
illumination, angle, and season, among other effects. Adaptation 
is a central issue in HSI classification. For example, the increase 
in revisit time of recent satellites has improved multitemporal 
analysis of scenes. Nevertheless, algorithms must be able to adapt 
to changing situations. Generally, the direct application of classi-
fiers trained on one image to new images leads to poor results: 
even if the objects represented in the images are roughly the 
same, differences in acquisition induce significant local changes 
in the PDF. These changes must be modeled and introduced in 
the classifiers. The concept of adaptation can be implemented at 
the levels of image preprocessing, robust and invariant feature 
extraction, or in the design of the classification algorithm. 

PREPROCESSING
The preprocessing phase can address adaptation through the use 
of radiometric correction techniques applied to the images. Abso-
lute corrections aim at transforming the radiance measured at 
the sensor into surface reflectance. Relative calibration tech-
niques adapt the radiometric properties between portions of an 
image or between images. Generally, absolute correction tech-
niques require additional ground reference data that in many 

RGB SVM (78.2%, 0.75)

Majority Voting (90.8%, 0.90) Markers (91.8%, 0.91)

(a) (b)

(c) (d)

[FIG4] RGB composition of the standard AVIRIS Indian Pine 
data set (200 spectral channels and spatial resolution 20 m). 
Classification maps are shown for spatiospectral classification 
with the segmentation and classification with majority voting 
and segmentation with markers against SVM on the original 
image only. Overall accuracies and the kappa statistic for each 
method are reported in parentheses [21]. 
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cases are not available or are difficult to collect. Relative calibra-
tion methods are often considered as a pragmatic alternative for 
adaptation. Among these methods, we recall histogram matching, 
relative radiometric normalization of time series [34], and multi-
variate histogram matching [35]. 

Images can be casted as point clouds in a geometrical space 
endorsed with an appropriate distance measure. Such a view is 
quite convenient because it allows us to move from image adap-
tation to manifold adaptation. Recent methods have explicitly 
considered the distortions occurring between image manifolds. 
In [36], multitemporal sequences for each pixel were aligned 
based on a measure of similarity between sequences barycenters, 
thus consisting into a global measure of alignment. In [37], spec-
tra of the pixels are spatially detrended using Gaussian processes 
to avoid shifts related to geometrical differences or to localized 
class variability. A recent principled approach tries to match 
graphs representing the data manifolds [38]. There, the graphs of 

the two domains are matched using a procedure aiming at maxi-
mizing their similarity, while at the same time preserving the ori-
ginal structure of the graphs. 

ADAPTING THE CLASSIFIER
Learning a transformation between domains may be insufficient 
to handle all the perturbing factors, so alternative approaches are 
concerned with the adaptation of the classifier itself. From a 
machine-learning perspective, the problem of classifier adapta-
tion is studied in the framework of transfer learning, and in par-
ticular, of domain adaptation. Domain adaptation reduces to 
learning from data in a source domain S  (e.g., a portion of an 
image) to extrapolate to a different target domain T  (another 
portion of the image or to another image). The problem has been 
given attention in HSI classification lately [39]. In this setting, 
source and target domains are assumed to share the same set of 
information classes (exceptions to this constraint in [40] and 

RGB Composition Reference SVM EMAP DBFE + EMAP EMAP +
CSVM [19]

EMAP +
GCSVM [20]

(81.01) (89.89) (94.50) (97.80) (98.09)

(a) (b) (c) (d) (e) (f) (g)

ω ω + s ω + ss s

[FIG5] (a) RGB composition along with (b) the available reference data for the ROSIS-03 Pavia University area data set (103 spectral 
channels and spatial resolution 1.3 m). Classification maps are shown for (c) SVM on the original image only against spatiospectral 
classification with the (d) EMAP and (e) EMAP after feature extraction by DBFE (81 data channels), (f) composite kernels with cross-
kernels and SVM [19], and (g) generalized composite kernels with multinomial logistic regression [20]. Overall accuracies [%] are 
reported in parentheses (~ : using spectral bands, s: using spatial filters from PCA). 

[TABLE 3] SUMMARY OF SPATIAL-SPECTRAL ALGORITHMS.

TYPE OF APPROACH MODEL IDEA
SPATIAL FILTERS EXTRACTION CO-OCCURRENCE EXTRACT TEXTURE BASED ON STATISTICS OF PAIRS OF PIXELS IN A NEIGHBORHOOD.

EMP MULTISCALE MATHEMATICAL MORPHOLOGY (BASED ON SIZE).

EMAP MULTISCALE MATHEMATICAL MORPHOLOGY (VARIETY OF ATTRIBUTE TYPES).

SPATIAL-SPECTRAL
SEGMENTATION

SEGMENTATION AND CLASSIFICATION 
BASED ON MAJORITY VOTING

ALL PIXELS ARE ASSIGNED TO THE MOST FREQUENT CLASS INSIDE A SEGMENTED
REGION.

SEGMENTATION AND CLASSIFICATION 
BASED ON MARKERS

MOST RELIABLY CLASSIFIED PIXELS ARE SELECTED AS “REGION MARKERS” FOR 
SEGMENTATION.

SEMI-SUPERVISED HIERARCHICAL
CLUSTERING TREE

RETURNS BOTH CLASSIFICATION AND CONFIDENCE MAPS. ACTIVE LEARNING USED
TO SELECT INFORMATIVE SAMPLES.

ADVANCED SPATIAL-
SPECTRAL CLASSIFICATION

COMPOSITE AND MULTIPLE
KERNELS

BALANCES BETWEEN SPATIAL AND SPECTRAL INFORMATION WITH DEDICATED
KERNELS.

GRAPH KERNELS TAKES INTO ACCOUNT HIGHER ORDER RELATIONS IN EACH PIXEL NEIGHBORHOOD.

MRF MARKOV RANDOM FIELD MODELING (PROBABILISTIC).
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[41]) and to follow similar (but not the same) class distributions. 
Domain adaptation problems in remote sensing have been mainly 
addressed with semisupervised techniques, which exploit the 
labeled samples from S  and the unlabeled samples from T  to 
derive a classification rule suitable for the target domain. The 
most recent developments in this sense consider semisupervised 
and domain adaptation SVMs [39], Gaussian processes [37], [41], 
and the mean-map kernel methods [15]. 

Recently, AL has been also used for adaptation assuming that 
some samples (as few as possible) from the target domain can be 
labeled by the user and added to the existing training set (defined 
on S ) to adapt the classifier to the target domain S  [40], [42]. 
This makes the adaptation process more robust than in the case of 
semisupervised learning at the cost of requiring additional labeled 
samples. Figure 6 illustrates this principle for a 102-bands image 
of the city center of Pavia acquired by the ROSIS-03 airborne sen-
sor. The whole image (only a portion is shown) has a size of 

,1 400 512#  pixels and spatial resolution is 1.3 m. Five classes of 
interest (buildings, roads, water, vegetation, and shadows) are con-
sidered, and a total of ,206 009 labeled pixels are available. We 
explore the potential of migrating a classifier built on a source 
area S  with as few labeled pixels as possible from the rest of the 
image .T  First, the model trained with 150 labeled pixels ran-
domly drawn from S  was directly applied to T  and yielded a Sl

of 0.67. Noticeably, a classifier built on 550 samples randomly 
selected on T  reached . .0 84Sl =  This suggests that different 
regions of the same scene follow very different statistics for classi-
fication. To improve the first classifier, we enlarged the first train-
ing set with labeled samples drawn from ,T  either taken through 
random sampling (RS, green dashed line) or with AL (AL, red solid 
line). Using AL allows for concentrating efforts in areas where the 
first model is suboptimal, so performance is improved with respect 
to RS. After 400 queries (thus, a model using 550 training samples 
in total), random sampling yields similar performance to a model 

using 550 randomly drawn pixels ( . ),0 84RSl =  while AL 
improves the results with .0 89ALl = . To reach the performance 
of the model using 550 random pixels, AL requires only 120 active 
queries (thus, a total of 270 samples in the model). 

ENCODING INVARIANCES IN THE CLASSIFIER
Image classifiers must be robust to changes in the data 
representation within each land cover class. The property of 
such mathematical functions is called invariance. A classifier 
should be invariant to object rotations, changes in illumination, 
the presence of shadows, and the spatial scale of the objects to 
be detected. Extracting robust features (invariants) for classifi-
cation and domain adaptation has been traditionally pursued by 
looking at the spatial or the spectral signal characteristics. On 
the one hand, scale invariants aim to make classifiers invariant 
to perturbations of object scales. In HSI classification, a single 
spatial scale is typically suboptimal because different classes 
exhibit diverse sizes, shapes, and internal variations. Multiscale 
classification schemes may alleviate these problems. Also, trans-
lation invariants have been recently explored by means of scale 
invariant feature transform descriptors and wavelet-based repre-
sentations. On the other hand, spectral invariants are consid-
ered the fundamental descriptors of object structure and are 
commonly employed to characterize canopy structure. Spectral 
invariance to daylight illumination allows, e.g., the improve-
ment of multitemporal image classification. 

Incorporating invariances in SVM can be achieved by design-
ing particular kernel functions that encode local invariance 
under transformations, or to generate artificial examples for 
training to which the model must be invariant. In the following 
example, we consider the latter possibility, with the virtual SVM 
(VSVM) method, which has been successfully exploited to 
encode scale, rotation, translation, and shadow invariance in 
HSI classification [43]. 

150 from S +
400 Random Pixels on T

550 from T
150 Pixels from S Only

150 from S + 400 Selected
with Active Learning on T

250 350 450 550
0.65

0.7

0.75

0.8

0.85

0.9

Number of Labeled Pixels

K
ap

pa

(Reference)

(Reference)

150

Only

Only

+ Random

+ Active

[FIG6] The use of AL to adapt a maximum likelihood classifier [40]. (a) Given an image and a set of reference pixels in a first source 
area ( )S , we want to classify another spatially disconnected target area ( )T , by adding labels chosen actively in the reference of T .
(b) Learning curves for the active (solid red line) and random sampling (dashed green line), evolving between the extremes of a model 
without adaptation (black dot at 150 samples), and another actively adapted that uses 550 samples randomly selected from T
(blue dashed line). (c) Classification maps in the target domain .T  The color of the bounding box in each map refers to the legend 
in the central plot. 
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In Figure 7, we illustrate the use of the VSVM encoding (spec-
tral) shadow-invariance for image classification. We use the same 
data acquired by the ROSIS-03 optical sensor of the city center of 
Pavia (Italy) used before. We perform patch-based classification 
using only 50 training patches of size w 5= . The classes to be 
detected are, again, buildings, roads, water, vegetation, and shad-
ows. Virtual support vectors (VSVs) were generated according to 
the observed exponential behavior of the ratio shadow/sunlit as a 
function of the wavelength [43]. Numerical results, as well as the 
zoom on a detail of the classification map, show that VSVM leads 
to more accurate results than the standard SVM: encoding 
shadow invariance reduces misclassifications on the bridge area 
and an overall more homogeneous classification over flat areas 
[see, e.g., the crossroads in Figure 7(b) and (c)]. 

CONCLUSIONS AND DISCUSSION
This article reviewed and analyzed the recent developments in 
hyperspectral image classification. Even though HSI follow similar 
spatial, spectral, and spatial-spectral image statistics to those con-
veyed by conventional photographic images, the hyperspectral sig-
nals impose additional challenges related to their high 
dimensionality and heterogeneity. Therefore, even though stand-
ard techniques in image processing and computer vision may be 
transported directly, HSI impose important constraints to develop 
efficient and effective classifiers. 

The use of methods derived from SLT has been a driving factor 
in recent years. SLT constitutes a proper framework to tackle the 
problems posed by hyperspectral remote sensing images, which 
typically involve scenarios with high-dimensional data and few 
training samples. SLT permits the embedding of numerical regu-
larization in nonlinear classifiers, and also the design of alternative 
forms of conditioning and incorporation of prior knowledge. Addi-
tionally, classification is often improved by including spatially 
based and manifold-based regularizers. SLT also allows the ability 
to design sparse methods that are able to work in relevant feature 
subspaces, where compact and computationally efficient methods 
can be run. Finally, the SLT framework has allowed the inclusion 
of prior knowledge in a very fruitful way, e.g., classifiers can now 
incorporate spatial and spectral invariances that disentangle ambi-
guities present in land-cover classification. 

The field is fast moving, and it is attracting researchers from 
the computer vision and machine-learning communities. New 
approaches are introduced regularly, which tackle new scenarios 
issued from high-resolution imaging (e.g., multitemporal, multi-
angular), while learning the relevant features via robust classifiers. 
It should be also noted that, with upcoming satellites, efficient 
algorithms for dimensionality reduction before classification and 
fast/parallel computing solutions will be necessary to accelerate 
the interpretation and efficient exploitation of HSI. 
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[FIG7] An experiment of patch-based classification with the 
virtual SVM encoding shadow invariance. (a) True-color 
composite and classification maps using (b) the standard SVM 
and (c) the VSVM obtained using 50 training pixels. Results are 
shown in parentheses in the form of (mean !  standard 
deviation of l  in 20 realizations).
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I
nterest in manifold learning for representing the topology 
of large, high-dimensional nonlinear data sets in lower, 
but still meaningful, dimensions for visualization and clas-
sification has grown rapidly over the past decade, particu-
larly in the analysis of hyperspectral imagery. High 

spectral resolution and the typically continuous bands of 
hyperspectral image (HSI) data enable discrimination between 

spectrally similar targets of interest, provide capability to esti-
mate within pixel abundances of constituents, and allow for 
the direct exploitation of absorption features in predictive 
models. Although hyperspectral data are typically modeled 
assuming that the data originate from linear stochastic pro-
cesses, nonlinearities are often exhibited in the data due to the 
effects of multipath scattering, variations in sun-canopy-sen-
sor geometry, nonhomogeneous composition of pixels, and 
attenuating properties of media [1]. Because of the dense 
spectral sampling of HSI data, the associated spectral 
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information in many adjacent bands is highly correlated, 
resulting in a much lower intrinsic dimensional space 
spanned by the data (Figure 1). Increased availability of HSIs 
and greater access to advanced computing have motivated the 
development of specialized methods for the exploitation of the 
nonlinear characteristics of these data. In this context, feature 
selection and feature extraction approaches for dimensionality 
reduction have received significant attention. While both fea-
ture selection and extraction result in some loss of informa-
tion relative to the original data, both have been demonstrated 
to be quite successful in the classification arena. Feature 
selection retains meaningful features for classification, but 
the algorithms are computationally intensive and often not 
robust in complex scenes. Alternatively, feature extraction 
approaches, which project the data to lower-dimensional 
intrinsic spaces, are typically more robust to variation in spec-
tral signatures across scenes, and most are computationally 
superior to optimal feature selection, although the interpret-
ation relative to the original spectral signatures is lost. Both 
feature selection and extraction are flexible relative to the 
choice of the back-end classifier.

Theoretical contributions and applications of manifold 
learning have progressed in tandem, with new results provid-
ing capability for data analysis and applications highlighting 
limitations in existing methods. For HSIs, the enormous size 

of the data sets and spatial clustering of classes on the image 
grid provide both challenges and opportunities to extend tradi-
tional manifold-learning methods. The machine-learning 
community has demonstrated the potential of manifold-based 
approaches for nonlinear dimensionality reduction and model-
ing of nonlinear structure [2]–[10]. The potential value of 
manifold learning for HSI analysis has been demonstrated for 
applications including feature extraction [1], [11], segmenta-
tion [12], classification [13]–[15], anomaly detection [16], 
[17], and spectral unmixing [18]–[21] with some approaches 
exploiting interband correlation [14], [15] and local spatial 
homogeneity [21]. Challenges encountered in analyzing data 
sets have inspired recent advances in manifold-learning meth-
ods, particularly related to feature extraction and visualiza-
tion. This article provides both an overview of traditional 
approaches and new directions for modeling HSI data on non-
linear manifolds. 

A general framework for representing spectral signatures 
based on graph weights is presented, and traditional unsuper-
vised global and local graph-based methods for dimensionality 
reduction are summarized. Extensions to exploit labeled data in 
single image and multitemporal sequences of hyperspectral data 
are described. Variants of manifold-learning-based projection 
are particularly suitable as a preprocessing step to traditional 
Bayesian classification. In this context, locality preserving 
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[FIG1]  A true color AVIRIS hyperspectral image over the Kennedy Space Center (KSC), Florida. Nonlinearity in the spectral data is 
exhibited in a plot of bands: 13, 65, and 31.
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discriminant analysis methods are discussed. While traditional 
eigendecomposition-based methods are computationally advan-
tageous, iterative methods can often provide improved separ-
ation of classes in the embedded space for both visualization 
and classification. Iterative methods are introduced in the con-
text of the affinity matrix, which is utilized to describe multidi-
mensional artificial field embedding (MAFE) and spherical 
stochastic neighbor embedding (SSNE) [22]. Examples of 
selected methods applied to a testbed of hyperspectral data are 
included for illustration of the methods using a one-nearest 
neighbor classifier. 

NONLINEAR MANIFOLD LEARNING 
IN A GRAPH EMBEDDING FRAMEWORK
Given a data set with training samples X xi i

n
1= =" ,  in Rm   

(m-dimensional feature space) and n  is the total number of 
training samples, nonlinear dimen-
sionality reduction algorithms 
adapt a graph embedding frame-
work in which ,G X W= " ,  is the 
undirected weighted graph and W
is the n n#  data-dependent simi-
larity or affinity matrix. The algo-
rithms utilize the notion of affinity 
weights [ , ]0 1Wij !  to measure the 
“distance” between two sample 
observations. The affinity functions 
do not use class label information 
but rather characterize the neighborhood relationships between 
all pairs of points based on feature differences. A popular 
approach to measure the affinity between samples xi  and jx
makes use of the heat-kernel

|| | |
,expW

x x
i

i j

i j
2

c c
= -

-
j e o (1)

where x x( )
i i i

knnc = -  denotes the local scaling of data sam-
ples in the neighborhood of ,xi  and x( )

i
knn  is the knn-nearest 

neighbor of .xi  Although the heat kernel has been shown to 
result in effective locality preserving properties, further 
improvements toward sparse affinity matrices can be achieved 
by adapting the scaling parameter ic  to the local data statis-
tics, which often provide a stronger adaptivity to the under-
lying structure of the embedded image manifolds. The affinity 
matrix can be modified to include spatial context, which can 
have a significant impact for manifold learning with HSIs, as 
discussed in a later section. 

When considering multiple data sources (e.g., coregistered 
gridded imagery data), disparity in the resulting feature spaces 
can be addressed via separate affinity matrices dedicated to each 
source. In the realm of kernel methods, a simple approach that 
has been exploited for geospatial image analysis utilizes compos-
ite kernels (e.g., a weighted linear mixture of kernels, each dedi-
cated to a data source: ( , ), 0s.tW x xW k kk

K
i
k

j
k

ki 1
$a a=

=j /  and 
)1kk

K

1
a =

=
/  to create a unified Gram matrix that characterizes 
relations across different input sources [23]. In the context of 

manifold-learning algorithms, such an approach is particularly 
relevant for algorithms that operate directly on the affinity 
matrix, .W  Various complex functional forms for Wk  can be 
adapted, although the heat-kernel defined in (1) remains a 
popular choice. 

DIMENSIONALITY REDUCTION VIA GRAPH 
LAPLACIAN OF SPECTRAL FEATURES
Nonlinear manifold-learning methods are broadly characterized 
as global or locally based approaches and often represented 
using a graph embedding framework [13]. Global manifold 
methods retain the fidelity of the overall topology of the data set 
but have greater computational overhead for large data sets, 
while local methods preserve local geometry and are computa-
tionally efficient because they only require sparse matrix com-
putations. Although global manifolds seek to preserve geometry 

across all scales of the data and 
have less tendency to overfit, which 
is beneficial for generalization in 
classification, local methods may 
yield good results for data sets 
which have significant local vari-
ability or submanifolds. 

Many popular existing approach-
es involve models that compute 
embeddings to preserve pairwise dis-
tances, seeking the global structure 
of data based on local linear fits. 

Manifold learning algorithms such as isometric feature mapping 
(ISOMAP) [2], kernel principal component analysis (KPCA) [3], 
and locally linear embedding (LLE) [4], for example, have re-
ceived much attention because of their firm theoretical founda-
tion associated with the kernel and eigenspectrum framework. 

In general, given a data matrix ,X  the dimensionality reduc-
tion problem seeks to find a set of manifold coordinates 

, ,Y y y Ri i
n

i
p

1 != =" ,  where typically, ,m p%  through a feature 
mapping : ,x y"U  which may be analytical (explicit) or data 
driven (implicit), and linear or nonlinear. For the hyperspectral 
data set used in this article, the “optimal” dimensionality is 
found to be approximately eight for the classical global mani-
fold-learning embeddings, 15–17 for the local embeddings, 
and eight to ten for the iterative embeddings. Spectral-based 
dimensionality reduction algorithms adapt a graph embedding 
platform, i.e., with , ,G X W= " ,  to compute the affinity matrix 
from which the graph Laplacian L is derived. Here, L D W= -

with a diagonal degree matrix defined by i , .iD W
jii j 6=/

In the one-dimensional case, where the resultant manifold 
coordinate for n  samples is a vector , , , ,y y yy n1 2 f= 6 @  the 
dimensionality reduction criterion for eigenspectrum-based 
methods can be represented as 

argminy Wy yi j i
1

2

yByT
= -)

=

j/ (2)

,argmin yLyT

1yByT
=

=

(3)

INCREASED AVAILABILITY 
OF HSI AND GREATER ACCESS

TO ADVANCED COMPUTING HAVE 
MOTIVATED THE DEVELOPMENT 

OF SPECIALIZED METHODS
FOR EXPLOITATION OF THE

NONLINEAR CHARACTERISTICS
OF THESE DATA.
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where B  is a constraint matrix that depends on the formulation of 
the dimensionality reduction method. In many algorithms the 
constraint removes any arbitrary scaling factors in the embedding 
space. For example, setting B  to a diagonal matrix often yields the 
required scale normalization. Table 1 summarizes various con-
straints that are encountered with traditional and modern graph 
embedding algorithms. The underlying goal is for sample pairs of 
larger weight to have manifold coordinates that are closer to each 
other, under a unique data geometry characterized by the graph 
Laplacian .L  The solution of the optimization problem can be 
obtained by solving the eigen-decomposition problem 

,Ly Bym=  where the one-dimensional manifold coordinates y
are given by the eigenvector with the smallest nonzero eigen-
value. This one-dimensional case can be easily generalized to 
the multidimensional case through the following expansion 

( ),argmin trY YLY* T

YBY IT
=

=

(4)

where I  is the identify matrix. Analogous to the one-dimensional 
case, the manifold coordinates Y  of target dimension p  can be 
obtained from the eigenvectors corresponding to the p  smallest 
nonzero eigenvalues. Each of the kernel-based manifold-learn-
ing algorithms summarized here can be described in terms of 
this common framework with different Laplacian matrices and 
constraints. For a detailed discussion, see [13]. 

ISOMAP and KPCA are the most widely applied global mani-
fold-learning approaches for nonlinear dimensionality reduction. 
The ISOMAP method assumes that the local feature space formed 
by the nearest neighbors is linear, and the global nonlinear trans-
formation can be found by connecting these piecewise linear 
spaces [2]. Defining ,Xi  the set of neighborhood nodes of node 

,xi  a distance matrix Sl is computed whereby the Euclidean dis-
tance to node x Xj i!  is computed, and the distance beyond Xi

is accumulated along the shortest path to obtain a shortest path 
network .Sstp  Dimensionality reduction is then accomplished 
through multidimensional scaling (MDS). The computational 

burden of computing the geodesic distance matrix scales as 
( ),logO n n2  motivating development of approximation methods 

such as Landmark ISOMAP (L-ISOMAP). These methods avoid 
the computation for the kernel matrix by selecting a subset of 
the original points, referred to as “landmark samples,” for which 
the geodesic distance computation is performed and the 
remainder of the points are inserted into the “backbone,”  
thereby reducing the computational cost of the method to 

( ),logO n n,  where ,  is the number of landmark samples [24], 
[25]. KPCA is a nonlinear extension of linear PCA in a feature 
space induced by a kernel function [3]. 

Local kernel-based manifold-learning methods include LLE 
[4], local tangent space alignment (LTSA) [7], and Laplacian 
eigenmaps (LE) [8]. All three methods are initiated by con-
structing a nearest neighborhood for each data point, and the 
local structures are then used to obtain a global manifold. 
According to the framework, by solving the eigenvalue prob-
lem ,LY BYm=  the embedding Y is provided by the eigenvec-
tors corresponding to the ~( )p2 1+ smallest eigenvalues (the 
eigenvector that corresponds to the smallest zero eigenvalue is 
a unit vector with equal elements and is discarded). In LLE 
[4], the local properties of each neighborhood are represented 
by the linear coefficients that best reconstruct each data point 
from its neighbors. In LTSA [7], the local geometry is 
described by the local tangent space of each data point, and 
the global manifold is determined by aligning the overlapping 
local tangent spaces. LE [8] obtains the weighted neighbor-
hood graph of each data point by calculating the pairwise dis-
tances between neighbors, where the distance is normally 
obtained using a Gaussian kernel function with parameter .v
The embeddings are obtained by minimizing the total distance 
between each data point and its neighbors in the low-dimen-
sional space. Parameter settings, including the size of the 
neighborhood, for both global and local manifold-learning 
methods and intrinsic dimensionality are selected experimen-
tally and usually robust over a range of values. 

[TABLE 1] AFFINITIES AND CONSTRAINTS FOR VARIOUS GRAPH EMBEDDING ALGORITHMS.

ALGORITHM AFFINITY CONSTRAINT APPROXIMATION

LFDA [15] ,W W( ) ( )
ij ij
lb lw — NONE

ISOMAP [5] | | | |W x xij i j
2= - B I= NONE

PCA/KPCA [3] / ,n i j1W ij != B I= NONE

LLE [4] ( )W M M M Mij
T T

ij= + - B I= NONE

LE [8] | | | | /exp tW x xij i j
2= - -^ h B D= NONE
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where , , ( )u fy y y yi j i j $to= - -=  approximates the indicator constraint, / ,nH I ee eT= -  is a n  dimensional vector with [ , , , ] .1 1 1e Tg=
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Supervised implementations of local manifold learning have 
also been developed for classification. Unsupervised local mani-
fold-learning approaches search the k  spectral neighbors of a 
given point, whereas supervised local manifold-learning 
approaches identify only the neighbors that are of the same 
class as the given point, often making these methods more 
attractive for classification [26], [27]. Supervised local manifold-
learning approaches then map all the training data from the 
same class onto a single point in the embedded space, resulting 
in computational complexity of ( ),O mn n1 2  where n1  and n2

represent the number of training and testing samples respect-
ively. Assuming there are c  classes, the outputs are c  orthog-
onal vectors , , .Y y y Rc c p c1 g != #6 @  The kernel out-of-sample 
extension method is attractive for unsupervised kernel-based 
embedding of large data sets but is required for testing data 
when training data are embedded via supervised local manifold-
learning methods [27]. 

NEW DIRECTIONS IN MANIFOLD LEARNING

MANIFOLD LEARNING FOR MULTITEMPORAL 
IMAGE DATA
Classification of remotely sensed data from multiple scenes 
acquired at different times or from spatially disjoint areas is an 
important problem where it is often desirable to exploit labeled 
data from one time or area to classify data from a different time or 
area. Although global manifolds are assumed to be similar, spec-
tral shifts in classes over space or time typically manifest them-
selves as localized variations in the manifold. When the goal is to 
exploit limited labeled data in a transfer learning mode to classify 
data in other scenes, changes in the manifold between images can 
result in misclassification of similar classes. Recent investigations 
that seek to jointly exploit the global and local characteristics of 
images [28], [29] and manifold alignment [30], [31] provide the 
foundation for a correspondence-based framework to classify 
hyperspectral data acquired in multiple time periods [32] or 
from spatially disjoint areas. 

In [33], a joint manifold over time periods T1  and T2  was 
obtained using the distance matrix 

,W
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W
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where W ,x xT T1 1  and W ,x xT T2 2  are geodesic distances between points 
within the two images (intra-image distances) which capture the 
global geometry of the data manifolds, and W ,x xT T1 2  and W ,x xT T2 1

represent the connection between the two images (interimage 
distance). The interimage distances and the resulting alignment 
are based on u  bridging pairs , , , ,i u1x xc

T
c
T

p
i

q
i

1 2
!` j 6 @  determined 

from the spatial-spectral optimization 
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2g !" ,  are 

spatial coordinates of the pair of images with n1  and n2  pixels, 
respectively. Distances between points on the two manifolds are 

defined in terms of distances to corresponding pairs within the 
respective manifold: , ,mini jW W W, , ,x x x x x xi

T
j
T

i
T

c
T

j
T

c
T

p
i

q
i

1 2 1 1 2 2= +^ ^h h  there-
by preserving local relations between arbitrary points and their 
nearest corresponding pair. The optimal joint manifold feature 
space { , , , , , } , p mY y y y y Rn n n n

p
1 1 1 1 1 2f f 11!= ++  is com-

puted by minimizing the cost function E W WX Yx x= -^ ^h h

where WY  is a distance matrix with elements ,i jWY =^ h

,y yi j-^ h  and the x  operator converts distance that charac-
terizes geometry to inner products. The resulting problem is 
solved using classical multidimensional scaling, yielding the 
respective eigenvectors. In recent work, Tuia et al. [34] also 
utilized manifold alignment in conjunction with linear, invert-
ible projections to jointly exploit and synthesize data from 
multiple sensors. 

LOCALITY PRESERVING DISCRIMINATIVE 
DIMENSIONALITY REDUCTION
PCA, linear discriminant analysis (LDA), and their many vari-
ants, such as subspace LDA, stepwise LDA [35], [36], etc. are 
commonly used for feature extraction prior to classification of 
hyperspectral data. Under the assumption of homoscedastic 
Gaussian class-conditional distributions, LDA is optimized for 
classification tasks but does not perform well when the data 
are heteroscedastic Gaussian, and it can fail for non-Gaussian 
data. This makes such projections inappropriate for Bayesian 
classifiers relying on Gaussian mixture models (GMMs), or for 
classifiers that assume the decision surfaces to be substantially 
nonlinear (e.g., nonlinear support vector machines in a ker-
nel-induced space). This issue is particularly relevant for 
hyperspectral imagery, where several factors can lead to devia-
tion from such assumptions, including variable illumination 
conditions, and significant mixing between the target pixel 
and background. 

Local Fisher’s discriminant algorithm (LFDA) [37] was 
developed as an extension to LDA to accommodate class distri-
butions that are not unimodal homoscedastic Gaussian, com-
bining the discriminative properties of LDA with properties of 
unsupervised locality-preserving projections (LPPs) [38]. Unlike 
LDA or PCA, the LPP seeks to find a linear map that preserves 
the local neighborhood structure of the data in the projected 
subspace, i.e., neighborhood points in the original input space 
remain neighbors in the LPP-embedded space and vice versa. 
LFDA obtains good between-class separation in the projection 
while preserving the within-class local structure [37]. It can 
then be expected that LFDA should be a useful feature reduction 
algorithm for supervised classification tasks, particularly for 
problems where local structures convey relevant information 
(e.g., when the data lie on a complex manifold in the input 
space) and need to be preserved. In recent work for supervised 
HSI analysis tasks [14], [15], [39], [40], LFDA and its variants 
have been found to be very effective feature extraction algo-
rithms, particularly when paired with powerful Bayesian classi-
fiers such as GMMs. The heat kernel’s normalized version has 
been adapted for LFDA to compute the local between-class W( )

i
lb
j

and within-class W( )
i
lw
j  weights as defined by 
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Here nl is the number of available training samples for the thl  class, 
nn

l

c
l1
=

=
/  and class labels are denoted by , , , ,z c1 2i f! " ,

where c  is the number of classes. 
In LFDA, the local between-class S( )lb  and within-class S( )lw

scatter matrices are defined as 

( ) ( ) ,W2
1 x x x xS( ) ( )

,
i

i j

n

i j i j
1

lb lb
= - - <

=
j/ (9)

.( ) ( )W
2
1 x x x xS ( )

,
i

i j

n

i j i j
1

lw = - - <

=

( )
j
lw/ (10)

LFDA seeks to find a projection LFDAU  that maximizes the 
“local” Fisher’s ratio as defined using the local scatter matrices 
defined above. The solution is obtained by solving the general-
ized eigenvalue problem ,S S( ) ( )lb

LFDA
lw

LFDAU K U=  where K  is 
the diagonal eigenvalue matrix. 

Based on (9) and (10), LFDA can be thought of as a “local-
ized variant” of LDA since it ensures that local neighborhood 
structures are preserved by incorporating an appropriate scal-
ing of the scatter matrices. Hence, when the data in the input 
space lie on nonlinear manifolds, or in general, possess non-
Gaussian, even multimodal class-conditional statistics, LFDA 
is expected to outperform traditional linear projection-based 
dimensionality reduction approaches. Another benefit of scal-
ing the LFDA-based scatter matrices is that the between-class 
scatter matrix is no longer rank-limited to .c 1-  Thus, the 
“optimal” dimensionality of the projected subspace is no 
longer restricted to .c 1-

Although LFDA serves as an effective feature reduction strat-
egy for HSIs, it is also prone to statistical ill conditioning when the 
training sample size is small. In recent work [41], a segmented 
feature reduction approach was developed wherein the high-
dimensional hyperspectral space is partitioned into contiguous 
subspaces, followed by LFDA-based feature reduction and GMM-
based classification. Hyperspectral imagery exploits such an 
approach naturally, since the correlation structure of the spectral 
feature space is often strongly block-diagonal (nearby bands are 
much more correlated than bands that are farther apart). The 
resulting approach showed substantial robustness to the small-
sample-size problem. Other approaches to discriminative feature 
reduction inspired by manifold learning are also emerging for HSI 
analysis. For example, in [42], a nearest feature line embedding 
transformation is proposed for hyperspectral dimensionality 
reduction, which also seeks to preserve the local manifold struc-
ture under the embedding. 

MANIFOLD LEARNING FOR SPATIAL-SPECTRAL 
CLASSIFICATION OF HSI
Traditional nonlinear dimension reduction approaches treat 
samples as statistically independent, ignoring the local spatial 
relationships among pixels that occur in patches, as well as 
the spatially disjoint locations of many spectrally similar 
classes. Spatial issues have been addressed in many ways by 
the image processing and remote sensing communities, 
including Markov random fields, vectors with stacked spectral-
spatial features, morphological profiles, and segmentation (see 
[43] for a comprehensive review). 

Recent work related to feature extraction from hyperspectral 
data has also addressed local spatial relationships via composite 
and other combined kernels [23], [44]–[46], tensor embedding 
[47], and iterative methods [22], [48,] [49]. Forero and Manian 
[50] proposed nonlinear diffusion partial differential equations 
(PDEs) for spatial preprocessing of HSIs, and the results demon-
strated a significant improvement in classification performance. 
Represented in the context of affinities, HSI spectral and spatial 
neighborhood relations ( , , , )WW s s x xi i j i j=j  can be computed 
through a weighted kernel function 

( , , , ) ( , ),expW W·s s x x x x
s s

i j i j
s

i j
p i j2

2

v
=

- - u) 3 (11)

where si  denotes the spatial coordinates of pixel ,i  and xi

denotes the m -dimensional spectral vector. The expression 
s si j

2-  weights image pixel values as a function of the spa-
tial distance from the center pixel and the variance parameter 

sv  and 

( , ) ( ) ( )expW 2
1x x x x x xp i j i j

T
i j

1R= - - --u ' 1 (12)

simply weights relations as a function of spectral differences 
between the center pixel and its neighbor pixel. With additional 
manipulations as shown in [22], ( , )W x xp i ju  can be rewritten as 

( , ) ( ) ,expW n tr
2

x x Sp i j
1R= - -u $ . (13)
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[FIG2] Plots of normalized eigenvectors for different graph 
neighborhoods computed from Euclidean distance, spatially 
weighted, and heat-kernel-based Laplacian affinity functions for 
KSC data.
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where S  is the sample covariance. 1R-  can be obtained by seek-
ing an orthogonal decomposition of the true covariance matrix 

.R  This can be achieved through an efficient, robust sparse mat-
rix transform [48], [51] to decorrelate HSI bands. The resulting 
affinity function infuses local adaptivity and spatial sensitivity to 
the neighborhood graph, which leads to preservation of local 
disjoint neighborhoods that are compact and similar, benefit-
ing hyperspectral data embedding. Figure 2 depicts the 
eigenspectra corresponding to the 
spatially weighted Laplacian graph 
for an HSI. The uniqueness and 
smoothness of eigenvalues demon-
strate the ability of affinity functions 
to capture both local and global 
structures in the data. Smooth, rap-
idly decaying eigenvalues suggest a 
neighborhood graph with a single, 
very large connected component, 
which is the case for using a heat 
kernel. Alternatively, smooth but 
slowly decaying eigenvalues suggest a neighborhood graph with 
various disconnected components, each based on the local spatial 
details of the image. 

ITERATIVE GRAPH EMBEDDING FOR
DIMENSIONALITY REDUCTION
Nonlinear embedding formulations that ignore spatial relation-
ships often collapse maps toward the center coordinates of the 
embedding space, thereby increasing the crowding or overlap-
ping of class boundaries. Given a spatially weighted affinity 
function, high-quality lower-dimensional HSI visualization and 
improved classification performance may be achieved by adapt-
ing an iterative dynamic embedding framework. 

In an iterative graph embedding framework, each affinity 
weight ,W Wi !j  as computed from (11), is viewed as character-
izing spring force properties between a pair of vertices i  and j
for all {( , )} .x x Gi j !  The affinities can be normalized or 
unnormalized for each observed pixel pair in .X  The embed-
ding of G  can then be interpreted as an assignment of posi-
tions to vertices in a p -dimensional space .R p  With the 
notation , , ,Y y y yn1 2 g= " , denoting the assigned embedding 
of ,G  where y Ri

p!  is the position of the map of the i th ver-
tex. An optimal embedding Y  can be obtained through an iter-
ative optimization scheme whose goal is to establish the 
minimum energy configuration state of .G  The quality of the 
embedding representation is heavily dependent on the choice 
of both the objective function and the kernel function used to 
compute the affinity matrix .W

Iterative embedding of data is based on an intuitive prem-
ise. Assume that , , ,y y y yT T

n
T T

1 2 g= " ,  is a vector in RNp  that 
denotes the state of .G  The framework builds on a dynamic 
model formulation [52], to employ pairwise distance depend-
ent functions and a neighborhood characterized graph to 
control the grouping of similar vertex maps. The dynamics 
evolve in continuous time; as such, the velocity as 

determined by the additive group effect on each vertex ,i  and 
at position yi  is described by 

( ) { ( ) ( )} .F Fy y y y y y yi
j i

i j r
i

i j a
i

i j= - - - -
!

j jo / (14)

:F R Rr
i "+ +j  denotes the repulsion term for dispersing all 

embedding pixel maps, whereas :F R Ra
i "+ +j  represents the 

attraction term for similar pixels. 
Functional forms are selected 

such that an attraction term domi-
nates the pairwise interaction 
between vertex maps at large dis-
tances, while at short distances the 
repulsion term dominates, and in-
between there is a unique distance 

ie j  at which both terms will be in 
equilibrium—defining a minimum 
energy configuration state and, 
hence, an optimal positioning of 
pairwise vertex maps. To generate 

the corresponding force field, the framework assumes the 
existence of pairwise dependent functions U R Ri

att " "+ +j  and 
U R Rrep " "+ +ij  such that

( ) ( ) ( )U FW y y y y y yi
i

i j a
i

i j i jattyid - = - -j
j j

and

j( ) ( ) ( ),U Fy y y y y yi j r i i jrepyid - = - -ii jj

where U i
att
j  and U i

rep
j  are viewed as artificial attraction and repul-

sion potential energy functions that determine the trajectories 
of vertex maps. The general embedding framework based on the 
dynamic model has the form 

i{ ( ) ( )} .U Uy y y W y yi
j i

i
i j

i
i jrep attyid= - - -

!

j
j jo / (15)

Following the negative gradient, i.e., to achieve an equilibrium 
state for (15), attraction and repulsion potential functions should 
be chosen such that the minimum of ( )U y yi

i jatt -
j  occurs 

around ,0y yi j- =  whereas the minimum of ( )U y yij
i jrep- -

occurs around ,y yi j " 3-  and that the minimum of the 
interactive field ( )U y yi

i jatt - -
j ( )U y yij

i jrep -  occurs at 
,y yi j ije- =  thus defining the equilibrium state of dynamic 

model. This general framework exhibits strong unifying proper-
ties that are applicable for deriving novel iterative MAFE algo-
rithms. Further illustrations in this study demonstrate its use for 
interpreting some of the existing nonlinear dimensionality reduc-
tion models, e.g., reformulation of the SNE [53]. 

MULTIDIMENSIONAL ARTIFICIAL FIELD EMBEDDING
Following the criteria described in the previous section, an 
attraction term according to a quadratic form can be chosen, 
i.e., ( .)U y y y yij

i j a i j
2

att p- = -  The notion of a repulsion 
force can be interpreted as a barrier constraint that can be 

GIVEN A SPATIALLY WEIGHTED 
AFFINITY FUNCTION, HIGH-

QUALITY LOWER-DIMENSIONAL 
HSI VISUALIZATION AND IMPROVED 

CLASSIFICATION PERFORMANCE 
MAY BE ACHIEVED BY ADAPTING 

AN ITERATIVE DYNAMIC
EMBEDDING FRAMEWORK.
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captured by an indicator function, even though its gradient is 
difficult to compute. There are continuous indicator function 
approximations that yield useful repulsion terms as summa-
rized in Table 1. An effective repulsion potential function used 
here has the form ( ) ( ) / ( ) .U y y y yij

i j r i j
2

rep p- = -  The 
parameters ap  and rp  reflect the attraction and repulsion 
force magnitude. Combining the two terms yields a MAFE 
unbounded repulsion (MAFE-UR) model [48], 

( ) .U y y y W
y y

a i j ij
i j

r

j ii 1

2
2p

p
= - -

-!=

) 3// (16)

Obtaining the optimal embedding 
maps involves solving a noncon-
v e x  opt imizat ion  prob lem, 

( ),argmin U yy RNp!  whose solution 
space is known to exhibit many local 
minima and instabilities for a stand-
ard gradient descent algorithm. A 
much-improved stable and efficient 
iterative updating scheme can be 
devised in the form of a local adap-
tive stochastic descent framework, 

( )Uy y y( ) ( ) ( )t t t t1 da= -+ (17) 

to yield the optimal maps. Where ( ),U y( ) ( ) ( )t t t1
1

1dGa a c= ++ -

( ) ( ), ( )U U Uy y y( ) ( ) ( )t t t
2

2 1d d dH G Hc+ - -  is the common adaptive 
learning rate. 1c  and 2c  are the meta-learning rates. This adap-
tation scheme exploits gradient-related information from the 
current as well as the two previous embedding coordinates in 
the sequence to introduce stability. The computational burden 
of computing the gradient scales as ( ),O n2  motivating the need 
to develop faster approximation methods or finding a closed-
form solution to ( ) .argmin U yy RNp!

STOCHASTIC NEIGHBOR EMBEDDING
Hinton and Roweis [53] developed an SNE method for preserv-
ing neighbor relations based on probabilities in the lower-
dimensional space. The original SNE method assumes that edge 
weights are antisymmetric Gaussian probabilities Wij  (i.e., 

)W Wij ji!  of pairs of vertices being neighbors in the higher-
dimensional space. Considering a symmetric version of Wij , the 
high-dimensional probability edge weights are defined using the 
Gaussian functions of the form 

{ / }
{

,
/ }

exp
exp

2
2

W
x x

x x
ij

r i r i i

i j i
2

2

v

v
=

- -

- -

!
/ (18)

where iv  is computed using a binary search method ensuring 
that the entropy of the distribution Wi  is approximately ( ),log k
where k  is the effective number of neighbors. In the lower-
dimensional space, SNE assumes symmetric Gaussian probabil-
ities Wij

u  between embedding coordinates, i.e., embedding graph 
weights are computed as 

{ }
{

.
}

exp
exp

W
y y

y y
ij

r i r i

i j
2

2

=
- -

- -

!

u
/ (19)

SNE proceeds to compute weights for the maps by minimizing 
a sum of Kullback–Leibler (KL) objective functions 

( | | ) .logKL
W
W

W W W
i

i i ij
j ii ij

ij
=

!

u
uc m/ // (20)

The goal is to minimize the distortion between each of the n
high-dimensional neighborhood distributions Wi s and their cor-
responding lower-dimensional neighborhood distributions .sWi

u

The difficulty with the original formulation of SNE is encoun-
tered in the optimization algorithm, where the antisymmetric 
assumption poses challenges requiring many experimentally 

defined parameters for attaining sta-
bility. In a more recent approach, 
Maaten and Hinton [54] improved 
on SNE by prescribing a student-t 
distribution to compute the lower-
dimensional probabilities. The 
improvement led to a tSNE model 
that preserves meaningful struc-
tures in lower-dimensional spaces. A 
further expansion in (20), while 
ignoring terms that do not depend 

on the unknown probabilities ,Wij
u  yields a functional form that 

makes both SNE and tSNE special cases of (15). In particular, 
SNE can equivalently be represented by 

( ) { } .log expU y y y W y yi j
j ii

ij
r i

r i
2 2= - + - -

! !

// /

Taking the derivative yields the gradient ( )U yd  that forms a 
dynamic equation that can be used to obtain optimal embed-
dings through an iterative algorithm in (17). 

SPHERICAL MANIFOLDS AND
STOCHASTIC EMBEDDING
Other than studying manifolds on a flat surface, better visual-
ization and increased classification performance may be 
achieved by seeking HSI coordinate representations on curved 
manifolds, which exhibit desirable properties and have been 
well studied in statistics [55]. 

To embed data onto a spherical surface, one can consider a 
unit p -dimensional sphere to be represented as the geometric 
locations of all unit vectors in R p 1+

: .1y yS Rp i
p

i
1

2!= =+" , (21)

For every observed image pixel, the goal is to learn the optimal 
embedding map yi  and a probability distribution that preserves 
the neighborhood relations originating from the high-dimen-
sional space. Such a goal can be achieved by applying the SSNE 
framework, which when given an image ,X  proceeds to com-
pute the high-dimensional symmetric probability wij  that pixel 
i  would select j  as its neighbor as 

( , , , )
( , , , )

,
W

W
W

s s x x
s s x x

ij

r i i r i r

i j i j
=

!
/ (22)

OTHER THAN STUDYING 
MANIFOLDS ON A FLAT SURFACE, 

BETTER VISUALIZATION AND 
INCREASED CLASSIFICATION

PERFORMANCE MAY BE ACHIEVED 
BY SEEKING HSI COORDINATE 

REPRESENTATIONS ON
CURVED MANIFOLDS.
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where W  is a combined spatial-spectral 
kernel function. The corresponding unit 
spherical coordinates are obtained from 
using an exit distribution [56] as a kernel 
density function that estimates the prob-
ability of spherical points being neigh-
bors. The exit distribution has the form 

( ; , ) , ,f
A
1 1

y y y
y y

Si
p i

p p

2

!t
t

t
=

-

-
(23)

where A p  is the surface area of ,S p   
i.e., ( ) / ( ( / )),A p2 2( / )

p
p 2r C= ( )$C  is the 

Gamma function, t  is the concentra-
tion parameter, and yi  is associated 
with the mean direction of the distribu-
tion. The probability Wij

u  of a spherical 
map i  selecting map j  as its neighbor is 
computed as 

.W
y y

y y
ij

k i
p

k i

j i
p

t

t
=

-

-

!

-

-

u
" ,/ (24)

An added benefit of SSNE (and other iterative embedding algo-
rithms) is that they jointly learn the optimal low-dimensional 
representations and also compute probability distributions over 
neighborhood relations (or unnormalized relations) with the 
understanding that spatial proximity should play a role in estab-
lishing meaningful manifold structures. SSNE obtains an opti-
mal embedding on a unit (hyper)sphere by iteratively solving an 
energy minimization problem whose cost function is defined by 
the sum of KL divergences between the high-dimensional distri-
bution ( )W Wi ij=  and the unknown spherical neighborhood 
distribution ( ) .W Wi ij=u u  The optimization problem is defined as 

| | .argmin KL W WY
i

n

i i
|Y y y Si

T
i p

=*

!=

u` j
$ .

/ (25)

Further manipulations of (25) reveal that SSNE has a functional 
form of (15) applied to a constant curvature space. 

HYPERSPECTRAL IMAGE ANALYSIS EXPERIMENTS
The efficacy of manifold-learning techniques for hyperspectral 
classification is illustrated using the KSC hyperspectral data—
a standard testbed data set that was acquired using the NASA 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sen-
sor at 18-m spatial resolution. With noisy and water absorp-
tion bands removed, 176 features remain for 13 wetland and 
upland classes of interest. Certain KSC classes that include 
cabbage palm hammock, and broad leaf/oak hammock upland 
trees; willow swamp, hardwood swamp, graminoid marsh, and 
spartina marsh tend to be difficult to separate in lower-dimen-
sional spaces. Their spectral signatures are mixed and often 
exhibit only subtle differences. Figure 3 illustrates the data set 
and ground reference information, including the total number 
of labeled points for each class. 

Class

Scrub

Willow

CP Hammock

CP/Oak

Slash Pine

Oak/Broadleaf

Hardwood Swamp

Graminoid Marsh

Spartina Marsh

Cattail Marsh

Salt Marsh

Mud Flats

Water

Color

[FIG3] Ground reference information for the KSC hyperspectral data set.
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[FIG4] The 2-D scatter plot of the first two dimensions of the 
ISOMAP embedding of KSC data.
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[FIG5] The 2-D scatter plot of the first two dimensions of the 
MAFE-UR embedding of KSC data.
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VISUALIZATION OF GRAPH EMBEDDING
Figure 4 shows a two-dimensional (2-D) scatter plot after an 
ISOMAP projection for the KSC hyperspectral data set, 
respectively. Similar spectral classes such as the lowland 
marsh grasses (swamp, hardwood swamp, graminoid marsh, 
and spartina marsh) and the upland woodlands (cabbage palm 
hammock, and broad leaf/oak hammock upland trees) are 

clustered on the manifold. Classes within the groups are diffi-
cult to separate because signatures are mixed and often exhibit 
only subtle differences. 

Figures 5–7 depict pixel coordinate representations after 
the iterative MAFE-UR, SNE, and SSNE 2-D projections, 
respectively. As illustrated from the embedding visualiza-
tions, both SSNE and MAFE map similar pixels onto coordi-
nates with similar values, forming tighter disjoint clusters. 
The disjoint nature of embeddings is attributed to the spatial 
information that is captured by the dual spatial-spectral ker-
nel function. 

CLASSIFICATION PERFORMANCE 
VIA MANIFOLD LEARNING
Table 2 depicts the overall classification accuracy, kappa statis-
tic, and the class-specific accuracies using unsupervised (PCA, 
LLE, ISOMAP) and supervised (LDA, SLLE, LFDA, SSNE) 
techniques, followed by a 1-NN classifier. Note that all graph-
based methods are sensitive to the parameter knn —the num-
ber of neighbors used when constructing the affinity matrix. 
However, depending upon the data (particularly it’s local 
structure) and the embedding algorithm, the classification 
performance of each algorithm achieves its maximum over a 
range of knn  values. All the labeled samples (see Figure 3) 
were used to develop the manifolds via unsupervised methods, 
and 50% of the labeled samples were used for training and 
50% for testing the classifier. Random sampling was repeated 
20 times, and the results represent an average accuracy over 
20 trials. Manifold-learning techniques outperformed PCA, 
provided a robust classification performance, and were par-
ticularly successful at classifying “hard” classes, such as 
upland vegetation classes four, five, and six. The intrinsic 
dimensionality indicated by ISOMAP and the iterative methods 
was somewhat higher than for PCA and was significantly 
higher for LFDA, LLE, and SLLE than for PCA. For these data 
and the 1-NN classifier, higher accuracies were achieved via 
local methods than global methods, and the value of exploiting 
correlation structure in the spectral data was demonstrated. 
The result is consistent with the work of Crawford et al. [13], 
where a more detailed sensitivity analysis was performed on 
the parameters for several global and local nonlinear mani-
fold-learning methods. Both the spectral embedding provided 
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[FIG6] The 2-D scatter plot of the first two dimensions of the 
SNE embedding of KSC data.
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[FIG7] The 2-D scatter plot of the first two dimensions of the 
SSNE embedding of KSC data.

[TABLE 2] THE OVERALL ACCURACY (OA), KAPPA-STATISTIC, AND CLASS-SPECIFIC ACCURACIES FOR THE 13 CLASSES IN THE 
KSC HYPERSPECTRAL DATA SET.

OA KAPPA 1 2 3 4 5 6 7 8 9 10 11 12 13 
PCA 88 86.7 93.8 85.8 89 62.2 50.5 44 82 86.5 95.5 92.2 95.7 87.6 99.9
ISOMAP 88.3 86.9 91.6 89.2 84.5 57.3 56.8 42.5 85.2 87.4 95.5 98.4 94.5 89.4 100
LLE 89.5 88.3 92.6 89 84 60.8 54.4 49 81.5 87.5 94.9 98.2 98.6 94.9 100
LDA 94 93.4 95.4 94 84.8 75.4 79.2 78.3 82.8 91.4 97.2 100 98.8 99.3 100
SLLE 93.2 92.4 96.4 94 93 73.1 65.5 62.3 91.7 91.3 98.9 98.6 98.5 95.4 100
LFDA 94.9 93.3 94.7 92.3 89.7 76.9 82.8 82.2 91.8 93.8 98.1 99.8 98.7 99.2 100
SNE 83.5 81.9 91.2 85.3 80.4 51.9 41.2 39.3 82.8 63.6 93.6 93.7 93.8 81.9 100
SSNE 99.4 99 98 100 100 100 95.4 100 100 100 100 100 100 98.5 100
MAFE-UR 99.6 99.7 98.3 100 100 91.2 100 86.2 100 100 100 100 98.97 100 100
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by iterative methods and the con-
tribution of localized spatial infor-
mation were demonstrated by the 
significantly higher accuracies and 
high-quality visualizations that 
were achieved, although the com-
putational overhead of such meth-
ods would need to be considered 
for large remotely sensed data sets. 

CONCLUSIONS
Advances in hyperspectral sensing 
provide new capability for characterizing spectral signatures in a 
wide range of physical and biological systems, while inspiring 
new methods for extracting information from these data. HSI 
data often lie on sparse, nonlinear manifolds whose geometric 
and topological structures can be exploited via manifold-learn-
ing techniques. In this article, we focused on demonstrating the 
opportunities provided by manifold learning for classification of 
remotely sensed data. However, limitations and opportunities 
remain both for research and applications. Although these 
methods have been demonstrated to mitigate the impact of 
physical effects that affect electromagnetic energy traversing the 
atmosphere and reflecting from a target, nonlinearities are not 
always exhibited in the data, particularly at lower spatial resolu-
tions, so users should always evaluate the inherent nonlinearity 
in the data. Manifold learning is data driven, and as such, results 
are strongly dependent on the characteristics of the data, and 
one method will not consistently provide the best results. Non-
linear manifold-learning methods require parameter tuning, 
although experimental results are typically stable over a range of 
values, and have higher computational overhead than linear 
methods, which is particularly relevant for large-scale remote 
sensing data sets. 

Opportunities for advancing manifold learning also exist for 
analysis of hyperspectral and multisource remotely sensed data. 
Manifolds are assumed to be inherently smooth, an assumption 
that some data sets may violate, and data often contain classes 
whose spectra are distinctly different, resulting in multiple man-
ifolds or submanifolds that cannot be readily integrated with a 
single manifold representation. Developing appropriate charac-
terizations that exploit the unique characteristics of these sub-
manifolds for a particular data set is an open research problem 
for which hierarchical manifold structures appear to have merit. 
To date, most work in manifold learning has focused on feature 
extraction from single images, assuming stationarity across the 
scene. Research is also needed in joint exploitation of global and 
local embedding methods in dynamic, multitemporal environ-
ments and integration with semisupervised and active learning. 
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B
lind hyperspectral unmixing (HU), also known as 
unsupervised HU, is one of the most prominent 
research topics in signal processing (SP) for hyper-
spectral remote sensing [1], [2]. Blind HU aims at 
identifying materials present in a captured scene, as 

well as their compositions, by using high spectral resolution 
of hyperspectral images. It is a blind source separation (BSS) 
problem from a SP viewpoint. Research on this topic started in 
the 1990s in geoscience and remote sensing [3]–[7], enabled 
by technological advances in hyperspectral sensing at the 

time. In recent years, blind HU has attracted much interest 
from other fields such as SP, machine learning, and optimiza-
tion, and the subsequent cross-disciplinary research activities 
have made blind HU a vibrant topic. The resulting impact is 
not just on remote sensing—blind HU has provided a unique 
problem scenario that inspired researchers from different 
fields to devise novel blind SP methods. In fact, one may say 
that blind HU has established a new branch of BSS approaches 
not seen in classical BSS studies. In particular, the convex 
geometry concepts—discovered by early remote sensing 
researchers through empirical observations [3]–[7] and 
refined by later research—are elegant and very different from 
statistical independence-based BSS approaches established in 

[Insights from remote sensing]

[Wing-Kin Ma, José M. Bioucas-Dias, Tsung-Han Chan, Nicolas Gillis, Paul Gader, 

Antonio J. Plaza, ArulMurugan Ambikapathi, and Chong-Yung Chi]

[Insights from remote sensing]

A Signal Processing 
Perspective on 

Hyperspectral Unmixing

©
 IS

TO
C

K
P

H
O

TO
.C

O
M

/M
IP

A
N

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [68] JANUARY 2014

the SP field. Moreover, the latest research on blind HU is rap-
idly adopting advanced techniques, such as those in sparse SP 
and optimization. The present development of blind HU seems 
to be converging to a point where the lines between remote 
sensing-originated ideas and advanced SP and optimization 
concepts are no longer clear, and insights from both sides 
would be used to establish better methods. 

This article uses an SP researcher’s perspective to review 
blind HU. We will consider several key developments, which 
include pure pixel search, convex geometry, dictionary-based 
sparse regression and nonnegative matrix factorization. We 
will not cover Bayesian techniques [8], although readers 
should note that they also represent key developments in blind 
HU. Our emphasis will be on insights, where we will showcase 
how each approach fundamentally works, and highlight signif-
icant results from a viewpoint of SP theory and methods. 
Some forefront advances will also be discussed. Note that this 
article does not aim at survey; please see a recent overview 
paper [2] that provides a comprehensive coverage of numerous 
blind HU methods and many other aspects. 

Our notations are standard in SP. In addition, given a 
matrix ,X ,xi  and xi  denote its ith column and ith row, respec-
tively; “$ ” represents elementwise inequality; 1 is an all-one 
vector of appropriate length; A@  is the pseudoinverse of A;

( )I A A A APA
T T= -= @  is the orthogonal complement projector 

of ;A ( )Aminv  and ( )Amaxv  denote the minimum and maxi-
mum singular values of ,A  respectively; · p  denotes the p,

norm; and · F  denotes the Frobenius norm. 

SIGNAL MODEL
Modeling hyperspectral signals is a difficult problem. It depends 
on numerous factors; some crucial ones include: the types of 
materials encountered in the acquired scene, the ways the materi-
als are physically mixed and constitute the scene topologically, the 
way light interacts with the materials, gets reflected and measured 
by the hyperspectral instrument, and the measurement environ-
ment. Over decades, the geoscience and remote sensing commu-
nity has devoted tremendous efforts to various modeling aspects, 

from which we have now significantly improved our understand-
ing of the true problem nature. Nevertheless, modeling can be an 
overwhelmingly complex process if one wants to treat every aspect 
very precisely. In particular, while radiative transfer theory (RTT) 
is well known to be able to provide accurate characterizations of 
photons’ interactions with the materials (see [2] and the refer-
ences therein), the resulting models are generally too difficult to 
use for signal analysis and processing. There is a compromise to 
make between model accuracy and tractability. 

We focus on a relatively simplistic but very representative 
model, specifically, the linear mixing model (LMM). The LMM lies 
at the center of interest of many important developments in blind 
HU. Despite the fact that the LMM is not always true, especially 
under certain scenarios that exhibit strong nonlinearity, it is gen-
erally recognized as an acceptable model for many real-world sce-
narios. The LMM is described as follows. We assume a 
macroscopic mixing scale in which the incident light interacts 
with only one material before reflecting off. Let [ ]y nm  denote the 
hyperspectral camera’s measurement at spectral band m  and 
at pixel .n  Letting [ ] [ [ ], [ ], , [ ]]y n y n y n y n RM

T M
1 2 f !=

where M  is the number of spectral bands, the LMM is given by 

[ ] [ ] [ ] [ ] [ ]y a Asn s n n n ni
i

N

i
1

o o= + = +
=

/ (1)

for , , ,n L1 f=  where each ,a Ri
M! , , ,i N1 f=  is called an 

endmember signature vector, which contains the spectral com-
ponents of a specific material (indexed by )i  in the scene; N  is 
the number of endmembers, or materials, in the scene; A =
[ , , ]a a RN

M N
1 f ! #  is called the endmember matrix; [ ]s ni

describes the contribution of material i  at pixel ;n
[ ] [ [ ], ,s n s n1 f= [ ]]s n RN

N!  is called the abundance vector at 
pixel ;n L  is the number of pixels; and [ ]n RM!o  is noise. Fig-
ure 1 illustrates the mixing process under the LMM. 

There are several important aspects concerning the LMM for-
mulation. First, since hyperspectral cameras have wide spectral 
ranges and fine spectral resolution, M  is often large— typically 
more than 200. Such large spectral degrees of freedom allow us to 
distinguish an endmember signature from another, as well as 

y [n ]

M
a1 a2 a3

s3 [n ]

s2 [n ]

s1 [n ]
x=

[FIG1] The linear mixing model.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [69] JANUARY 2014

mixtures of endmember signatures, provided that the materials 
are sufficiently different from one another. Hence, it is reasonable 
to assume that { , , }a aN1 f  is linearly independent, and we will 
assume that this condition holds throughout the article. Second, 
the mixing process in (1) is a consequence of limited spatial reso-
lution of hyperspectral cameras. Specifically, one pixel may not be 
spatially fine enough to contain one material only. For example, 
each pixel is about 4 m #  4 m to 20 m #  20 m for airborne visi-
ble/infrared imaging spectrometer, depending on the altitude of 
the flight. Third, while the noise vector [ ]no  is commonly used to 
represent background and instrument noise, one may also use it 
to incorporate errors arising from modeling inaccuracies. From 
such a perspective, (1) can serve as a reasonable approximate 
model when nonlinear effects are not too strong. Fourth, by 
nature, the abundance vectors [ ]s n  should satisfy 

[ ] , , , , [ ] ,s n i N s n0 1 1andi i
i

N

1
f$ = =

=

/ (2)

for every , , , .n L1 2 f=  The second constraint above, com-
monly referred to as the abundance sum constraint or the sum-
to-one constraint, means that abundances give the fractional 
proportions, or percentages, of the different materials in a pixel. 
For convenience, we will write 

[ ] { | , },s s s sn 10 1RS N T! ! $= = (3)

where S  denotes the feasible set of abundance vectors. Note 
that S  is a unit simplex. 

The LMM introduced above is considered standard. That said, 
there are some hidden complications. Here we briefly mention 
them; interested readers can find further clarifications in [2]. 
First, in the model (1), [ ]y n s are actually processed measure-
ments. Raw measurements from the hyperspectral camera usu-
ally undergo a series of processing steps, such as radiometric 
calibration, geometric correction, and atmospheric compensation 
[9], before arriving at the simple LMM. Second, for simplicity we 
have associated an endmember with a material, presumably pure. 
However, an endmember could also be a composition of several 
materials; i.e., a material made of several materials. The definition 
of an endmember can be subjective, and is dependent on applica-
tions. Third, we have assumed that the sum-to-one constraint in 
(3) holds. In practice, the sum-to-one constraint may be violated 
under the so-called endmember variability (EV) effects. Besides 
modeling issues, it is worth noting that recently there has been 
growing interest in considering specific but more treatable non-
linear mixture models for HU; the same applies to EV. In these 
scenarios, insights learned from LMM-based HU remain vital and 
provide building blocks for non-LMM HU problems there. We 
refer readers to [10] and [11] in this issue of IEEE Signal Process-
ing Magazine for a coverage of nonlinear HU and EV, respectively. 

PROBLEM STATEMENT
We are concerned with the HU problem, under the model setting 
in (1)–(3). Specifically, HU aims at recovering [ ]s n  from [ ],y n
thereby retrieving every material’s abundance map { [ ]}s ni n

L
1=

from the hyperspectral measurements. Assuming full knowledge 

of the endmember matrix A,  we can carry out unmixing by solv-
ing constrained linear least squares (LS) problems: 

[ ] [ ] [ ] ,arg mins y Asn n n
[ ]s n 2

2

S
= -

!
t (4)

for , , .n L1 f=  Fundamentally, the above problem is considered 
an “easy” problem—it is a convex optimization problem, and a 
simple way to obtain a solution is to call some general-purpose 
convex optimization software, such as the widely used CVX [12]. 
Alternatively, one can design dedicated algorithms for (4) to have 
more efficient implementations; this is a more popular option in 
the field [13]–[15]. What makes HU fundamentally challenging is 
not (4) (or other variants), but the fact that we often do not have 
full knowledge of A—for if we do, it means that we know exactly 
all the materials in the scene, which is unlikely in reality. 

Blind HU amounts to recovering { [ ]}s n n
L

1=  from { [ ]}y n n
L

1=

without knowledge of .A  The problem can also be stated as that 
of identifying A  from { [ ]}y n n

L
1=  without knowledge of 

{ [ ]} .s n n
L

1=  At this point, readers who are familiar with BSS may 
have realized that the problem formulation of blind HU is the 
same as that of BSS: The endmember matrix A  and abundance 
vectors [ ]s n  are the mixing matrix and true source vectors in 
BSS, respectively. While this observation is true, and in fact has 
been noticed for a while [16], classical BSS methods established 
in the SP field usually do not fall in any of the mainstream blind 
HU approaches. The key reason is that under the unit simplex 
constraint (3), the sources { [ ]}s n n

L
1=  do not satisfy the statisti-

cal independence assumption, which is a very essential assump-
tion in many BSS methods, particularly the well-known 
independent component analysis (ICA). The violation of source 
independence makes many existing BSS methods an inappro-
priate choice for blind HU from the outset. 

Before delving into blind HU, we should point out that we 
will generally assume ,N  the number of endmembers, to be 
known. As in BSS and sensor array processing in the SP field, 
where the same aspect has been extensively studied under the 
name of model order selection (see, e.g., [17]), the problem of 
identifying the number of endmembers can be seen as a sepa-
rate problem; see [2, Sec. III] for a description. One may also 
build on an existing blind HU approach to provide joint blind 
HU and endmember number identification. 

PURE PIXELS PURSUIT
Our review begins with a very simple class of methods that
hinges on a special model assumption called pure pixels.

DEFINITION OF PURE PIXELS
We say that endmember i  (or material )i  has a pure pixel if for 
some index denoted by ,i,  we have 

[ ] ,s ei i, = (5)

where e Ri
N!  is a unit vector with the nonzero element at the 

ith entry (that is, [ ]e 0i j =  for all ,j i!  and [ ] ) .e 1i i =  More-
over, we say that the pure pixel assumption holds if every end-
member has a pure pixel.
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Physically, the existence of pure pixels means that while 
hyperspectral pixels are generally mixtures of several materials, 
there are certain pixels that are constituted by one material 
only. This can be seen from the model (1). Assuming pure pixels 
and no noise, the observed vector at pixel i,  is 

[ ] ,y ai i, = (6)

for , , ,i N1 f=  which are the endmembers. In practice, there 
are scenarios where the pure pixel assumption holds. For exam-
ple, imagine a scene that consists of water and soil. If there exist 
some local pixel regions that contain either water or soil only, 
then those regions contain pure pixels. Note that since more 
than one pure pixel may exist for a particular endmember, i,

may not be unique. However, we should also note that the pure 
pixel assumption does not always hold, e.g., in a scene consist-
ing of highly mixed minerals, or if the spatial resolution of the 
hyperspectral camera is too low. 

Pure pixels provide a unique opportunity for blind HU. In 
essence, if we know the pure pixel indices , , ,N1 f, ,  then 
[ [ ], , [ ]] [ , , ]y y a aN N1 1f f, , =  is the endmember matrix 
itself—and the problem is solved—in the noiseless case. How-
ever, the pure pixel indices are not known a priori, and the 
problem is to find them. 

SUCCESSIVE PROJECTIONS ALGORITHM
We introduce a simple algorithm for finding the pure pixels of 
all endmembers. The prerequisite required to understand the 
algorithm is just basic knowledge of linear algebra. 

Again, consider the noiseless case and assume that the pure 
pixel assumption holds. We notice that for any ,n

[ ] [ ] [ ]y a an s n s ni
i

N

i i i
i

N

2
1 2

2
1

#=
= =

/ / (7a)

[ ] as ni
i

N

i
1

2=
=

/ (7b)

,max a
, ,i N

i
1 2#
f=

(7c)

where (7a) is due to the LMM and the triangle inequality, 
and (7b) and (7c) to the unit simplex constraint (3). It can 
be seen that equality in (7) holds when [ ] ,s en j=  where 

;arg max aj , ,i N i1 2= f=  which holds at ,n j,=  i.e., [ ]y n  is a 
pure pixel corresponding to the jth endmember [cf. (6)]. Also, 
equality in (7) cannot be attained by nonpure pixels, by the 
equality condition of the triangle inequality and the linear 
independence of { , , } .a aN1 f  Assuming without loss of gener-
ality (w.l.o.g.) that ,j 1=  we can identify the first endmember 
signature by 

[ ], [ ] .arg maxy ya n
, ,n L

1 1 1
1 2

2, ,= =
f=

t t t (8)

Note that a1t  is a perfect estimate of a1  under the aforemen-
tioned settings. 

The next question is to identify pure pixels corresponding to 
other endmembers. Suppose that we have previously identified 

k 1-  endmember signatures, denoted by , , ,a ak1 1f -t t  and that 
the identification is perfect, i.e., a ai i=t  for , , .i k1 1f= -  The 
idea to identify the next endmember is to perform nulling—a 
standard SP trick that has appeared many times (e.g., [17]), but 
proves very useful in various fields. Let [ , , ],A a a:k k1 1 1 1f=- -

t t t

and construct its orthogonal complement projector .P A : k1 1

=
-

t

Since P a 0A i: k1 1 =
=

-
t  holds for any ,i k1  we have that 

[ ] [ ]P y P an s nA Ai
i k

N

i2
2

: :k k1 1 1 1=
= =

=
- -

t t/ (9a)

,max P a
, ,

A
i k N

i 2: k1 1#
f

=

=
-

t (9b)

where (9b) is obtained in the same way as (7). And like (7), it 
can be shown that equality in (9) holds only for a pure pixel cor-
responding to a previously unidentified endmember, which we 
can assume w.l.o.g. to be that at .n k,=  The kth endmember 
signature can therefore be identified via 

[ ], [ ] .arg maxa y P y n
, ,

Ak k k
n L1 2

2
: k1 1, ,= =

f

=

=
-

t t t t (10)

Hence, by induction, we can identify all the endmembers. 
The algorithm presented on the next page is called the suc-

cessive projections algorithm (SPA). Algorithm 1 gives the 
pseudocode of SPA, which is very simple. From the above alge-
braic development, we conclude that in the noiseless case and 
under the pure pixel assumption, SPA perfectly identifies all 
the endmember signatures { , , } .a aN1 f

We should provide a brief historical note on SPA, since it has 
been repeatedly rediscovered. To our best knowledge, SPA first 
appeared in chemometrics in 2001 by Araújo et al. [18]. Later, a 
very similar algorithm, called the automatic target generation 
process (ATGP), was proposed by Ren and Chang in 2003 in 
remote sensing [19]. Curiously, the development we just dis-
played, which shows why SPA works from an algebraic SP view-
point and pins down its endmember identifiability, was not seen 
until recently; see [20, Appendix F]. There are other ways to 
derive SPA, which will be described later. It is worth pointing 
out that SPA has been used successfully for rather different pur-
poses. In numerical linear algebra, SPA is closely related to the 
so-called modified Gram–Schmidt algorithm with column piv-
oting, used for example to solve linear LS problems [21]. In 
machine learning, SPA has been used for document classifica-
tion where the pure pixel assumption is referred to as the sepa-
rability assumption and requires that, for each topic, there 
exists at least one word used only by that topic; see [22] and the 
references therein. 

The above SPA development is based on the noiseless argu-
ment. An interesting question is therefore on sensitivity against 
noise. A provable performance bound characterizing noise sensitiv-
ity has been proposed very recently in [23], and is briefly described 
here. Let us denote ( ),Aminv v=  which is positive since 
{ , , }a aN1 f  is linearly independent, and | | | | .max aK i N i1 2= # #

Let us also denote the noise level .| | [ ] | |max nn L1 2oe = # #  Then, 
under the pure pixel assumption and assuming that the noise 
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level satisfies / ( ) ,NKO 3 2#e v^ h SPA identifies all the end-
member signatures { , , }a aN1 f up to error /( ) ;KO 2 2e v^ h

more precisely, we have 

| | | | .max min a a KO
i N j N

i j
1 1

2 2

2
#

v
e-

# # # #
t c m (11)

The above analysis result provides significant practical implica-
tions. We see in (11) that the noise robustness of SPA depends 
on the ratio / .K v  It can be shown that [23] 

| | | |
| | | |

( )
( ) .min

max
a
a

A
AK

min

max

i N i

i N i

1 2

1 2
# #
v v

v

# #

# #

Thus, the noise robustness of SPA depends on 1) how different 
the magnitudes of the endmember signatures are and 2) how 
well the true endmember signatures are spectrally distributed. 
In particular, the latter implies that challenging scenarios lie in 
highly similar endmembers. 

Let us further point out two notable facts. First, one can 
generalize SPA by replacing the 2,  norm in (9)–(10) by any con-
tinuously differentiable and locally strongly convex function 
whose minimizer is zero, e.g., any p,  norm with .p1 31 1+
The corresponding algorithm not only works in the noiseless 
case, it is also shown to possess a similar error bound as in (11) 
[23]. According to the analysis, the variant using the 2,  norm 
has the best robustness against noise among all locally strongly 
convex functions; see also [24] for numerical evidence. Second, 
it is possible to improve the error bound above to ( / )KO e v^ h  
by using the following postprocessing strategy [22]: Let 
{ , , }a aN1 ft t  be the N  endmembers extracted by SPA. Then, for 

, , ,i N1 f=

1) Project the original data { [ ]}y n n
L

1=  onto the orthogonal 
complement of { } .a ,k k k i

N
1 !=t

2) Replace ait  with the column of { [ ]}y n n
L

1=  whose 2,  norm 
of the projection is maximum.

This iterative refinement strategy is identical to a previously 
proposed blind HU algorithm (but without a robustness analy-
sis); it will be further discussed in the section “Simplex Volume 
Maximization.” 

OTHER ALGORITHMS AND DISCUSSION
There are many other pure pixels search algorithms; see [2, Sec.  
VI.A] for a review. A representative algorithm in this family is 
vertex component analysis (VCA), proposed in 2003 [25], [26]. 

VCA is similar to SPA—it also employs successive nulling, but 
differs in the way it picks pure pixels. Specifically, in VCA, the 
right-hand sides (RHSs) of (8) and (10) are replaced by 

| [ ] | ,max w y n
, ,

k
n L

k
T

1
, =

f=

t (12)

for , , ,k N1 f=  where wk  is a randomly generated vector lying 
on the orthogonal complement subspace of .A :k1 1-

t  Specifically, 
it is given by / ,w P PA Ak 2: :k k1 1 1 1p p=

= =
- -

t t  where p  is an indepen-
dent and identically distributed (i.i.d.) zero-mean Gaussian vec-
tor. Following the same derivations described above for SPA, 
one can show that VCA also perfectly identifies all the endmem-
ber signatures in the noiseless case and under the pure pixel 
assumption; this result holds with probability one. Also, we 
must mention the  pixel purity index (PPI) by Boardman et al.
in 1995 [6], which is one of the earliest blind HU algorithms. 
PPI does not have successive nulling. It is analogous to running 
(12) only for ,k 1=  but for many independent random trials. 
The number of trials needs to be large enough so to increase the 
chance of successfully hitting all endmembers’ pure pixels. For 
numerical comparisons of SPA, VCA, and PPI, please see [23] 
(also [20]). 

Some additional comments are in order. 
1) To simplify the presentation, we have intentionally skipped 
a conventional preprocessing procedure, specifically, dimen-
sion reduction (DR). In practice, VCA and PPI would apply 
DR to the observed data { [ ]} ,y n n

L
1=  prior to pure pixels 

search. While we have seen that DR is not required in SPA (as 
well as VCA and PPI), applying DR plays a crucial role in sup-
pressing noise, which in turn helps improve pure pixel identi-
fication performance. Readers are referred to [2, Section III] 
for the state-of-the-art DR methods in HU. 
2) SPA can be extended in at least two ways. First, it can be 
modified to accommodate outliers, which are anomalous 
pixels that exhibit markedly different behaviors from the 
nominal model and can cause substantial performance deg-
radation. The idea is to consider outliers as endmembers, 
identify them together with true endmembers, and discard 
them from the obtained estimates [23]. Second, one can 
extend the method for joint blind HU and endmember 
number identification. We note that if we keep running the 
SPA step in (10) recursively, then, at stage ,k N 1= +  the 
projection residuals [ ]P y nA 2

2
:k1 1

=
-

t  become zeros. Thus, 
the projection residuals may serve as an indicator of the 
number of endmembers. Similar ideas have been consid-
ered in [24] and [27]. 

CONVEX GEOMETRY
We have previously shown how blind HU may be easily handled 
under the pure pixel assumption. The pure pixel concept actu-
ally came from the study of convex geometry (CG) of hyperspec-
tral signals, where remote sensing researchers examined the 
special geometric structure of hyperspectral signals and looked 
for automatic methods for endmember determination, i.e., 
blind HU. In fact, a vast majority of blind HU developments, if 

Algorithm 1 SPA.

input { [ ]} ,y n n
L

1= .N
1: P I==

2: for , ,k N1 f= do
3: [ ]arg max P y n, ,k n L1 2

2
, = f

=
=

t

4: [ ]a yk k,=t t

5: : ( ( ) ( ) / )P a a aP P P PI T
k k k 2

2
= -= = = = =t t t

6: end for
output [ , , ] .A a aN1 f=t t t
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not all, are directly or intuitively related to concepts introduced 
in early CG studies, such as simplex volume minimization by 
Craig [4], simplex volume maximization by Winter [7], and the 
previously reviewed pure pixel search by Boardman et al. [6]. 
We give a historical review in the “Who Discovered Convex 
Geometry for Blind Unmixing?” 

PRELIMINARIES
We introduce several mathematical notations and facts in con-
vex analysis, whose physical relevance to blind HU will become 
clear soon. The affine hull of a set of vectors { , , }a a RN

M
1 f 1

is defined as 

{ , , }  |  , .a a y a 1aff RN i
i

N

i
N

i
i

N

1
1 1

f !ii i= = =
= =

) 3/ / (13)

An affine hull can always be represented by

{ , , } { | }a a y Cx d xaff RN
P

1 f != = + (14)

for some ,C RM P! # ,d RM!  where ( )C Prank =  and 
P N 1# -  is the affine dimension of the affine hull. The affine 
dimension is P N 1= -  if { , , }a aN1 f  is affinely independent. 

The convex hull of a set of vectors { , , }a a RN
M

1 f 1  is 
defined as 

{ , , }  |  , .a a y a 10conv N i
i

N

i i
i

N

1
1 1

f $ii i= = =
= =

) 3/ / (15)

The set { , , }a aconv N1 f  is called an ( )N 1- -simplex, or simply 
a simplex, if { , , }a aN1 f  is affinely independent. The vertices of 
a simplex are , , .a aN1 f  Given a full-dimensional simplex, i.e., 
an ( )N 1- -simplex lying in RN 1-  (or ),M N 1= -  its volume 
can be determined by 

( , , ) deta a
a a

c
1 1

vol N
N

1
1

f
f

f
= c m; E (16a)

([ , , ]) ,det a a a ac N N N1 1f= - -- (16b)

where /( ) !c N1 1= -  For the mathematical details of the above 
concepts, readers are referred to the literature [35]. 

CONVEX GEOMETRY IN HYPERSPECTRAL SIGNALS
There is a strong connection between convex analysis and 
hyperspectral signals. To see it, consider the signal model (1)–
(3) in the noiseless case. By comparing the model and the defi-
nition of convex hull in (15), we observe that 

Affine Transformation
y [n ] x [n ]

0

aff{a1, ···, a3}

conv{a1, a2, a3}

conv{b1, b2, b3}

d

c1

c2

x [n ] = C†(y [n ] – d )

a1

a2

a3

b1

b2

b3

[FIG2] The convex geometry of hyperspectral signals.

WHO DISCOVERED CONVEX GEOMETRY FOR BLIND UNMIXING?

In geoscience and remote sensing, the work by Craig in the 
early 1990s [3], [4] is widely recognized to be most seminal 
in introducing the notion of CG for hyperspectral signal 
analysis and unmixing. Craig’s original work not only 
described simplex volume minimization, which turns out to 
become a key CG concept for blind HU, it also inspired other 
pioneers, such as Boardman who made notable early contri-
butions to CG-based blind HU [5] and introduced pure pixel 
search [6], and Winter, who proposed the simplex volume 
maximization concept [7] that results in the popularized 
N-FINDR algorithm class. What is remarkable in these early 
studies is that they discovered such beautiful blind SP con-
cepts through sharp empirical observations and strong intu-
itions, rather than through rigorous SP or mathematics. 

CG is also an idea that has been discovered several times in 
different areas. The introduction of CG can be traced back to 

as early as 1964 by Imbrie [28]. Imbrie’s work belongs to 
another branch of geoscience studies wherein CG is used for 
the analysis of compositional data in earth science, such as 
mineral assemblages, grain-size distribution data, and geo-
chemical and petrological data; see [29] for an overview. In 
fact, Imbrie’s Q-mode analysis and the subsequent QMODEL 
by Klovan and Miesch [30] are conceptually identical to vertex 
or pure pixel search, although the methodology is different. 
Likewise, Full et al. already considered the same simplex vol-
ume minimization principle as Craig’s in the 1980s [31]. CG 
has also been independently discovered in other fields such as 
chemometrics [32] and SP [33], [34]. In all the discoveries or 
rediscoveries mentioned above, the driving force that led 
researchers on different backgrounds to devise the same idea 
seems to be with the geometric elegance of CG and its pow-
erful implications on solving blind unmixing problems.
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[ ] { , , }, , , ,y a a n Ln 1conv for allN1 f f! =

i.e., each measured hyperspectral pixel [ ]y n  is a convex combi-
nation of the endmember signatures , , .a aN1 f  Also, the set 

{ , , }a aconv N1 f  is a simplex, since { , , }a aN1 f  is linearly inde-
pendent (and thus affinely independent). The left-hand side of 
Figure 2 gives a vector space illustration for the case of .N 3=
As can be seen, { , , }a aconv N1 f  is a triangle; note that 

{ , , }a aconv N1 f  is a tetrahedron for ,N 4=  and so forth. Also, 
every [ ]y n  is enclosed by the triangle, and the corners of the 
triangle, or more formally, the vertices of { , , },a aconv N1 f  are 
the true endmember signatures , , .a aN1 f  This observation 
is simple, but gives a very powerful implication—if we can find 
all the vertices of { , , }a aconv N1 f from the observation
{ [ ]} ,y n n

L
1= then blind HU is solved.

Intuitively speaking, CG-based blind HU amounts to finding a 
set of vectors, say, { , , },a aN1 ft t  such that the corresponding sim-
plex { , , }a aconv N1 ft t  gives a best fitting to the true endmembers’ 
simplex { , , } .a aconv N1 f  The previously reviewed pure pixel 
search algorithms are among one class of such CG solutions; the 
idea is that pure pixels, if they exist, are also vertices of 

{ , , } .a aconv N1 f  Hence, pure pixel search is also vertex search 
in CG, under the pure pixel assumption. Now, we are interested in 
a different approach where simplex volume is used as the metric 
to find the best-fitting simplex. Moreover, the pure pixel assump-
tion will not be assumed during the development. We should nev-
ertheless mention a subtle point that the pure pixel assumption 
will come back when we discuss endmember identifiability. 

Before proceeding to the main developments, it is essential 
for us to introduce a concept related to the affine nature of 

[ ] .y n  Since [ ] { , , },y a an conv N1 f!  it also holds true that 
[ ] { , , };y a an aff N1 f!  cf. (13). By the equivalent affine hull 

representation in (14), we can write 

[ ] [ ] ,y Cx dn n= + (17)

for some ,C R ( )M N 1! # - ( ) ,C N 1rank = - ,d RM! [ ] ,x n RN 1! -   
, , .n L1 f=  Suppose that ( , )C d  is known, and consider the 

inverse of (17) with respect to (w.r.t.) [ ]x n

[ ] ( [ ] ) .x C y dn n= -@ (18)

From the signal model (1)–(3), it is easy to show that

[ ] [ ] [ ],x b Bsn s n ni
i

N

i
1

= =
=

/ (19)

where ( ) ,b C a d Ri i
N 1!= -@ - , , ,i N1 f=  and [ , ,B b1 f=

] .b R( )
N

N N1! #-  We see that (19) takes exactly the same form as 
the original model (1), but its vector dimension is ,N 1-  which 
is less than .M  Also, { , , }b bconv N1 f  is a full-dimensional sim-
plex [36]. Therefore, (19) is a dimension-reduced equivalent 
model for hyperspectral signals, where the CG structure is pre-
served. We will employ the equivalent model (19) in our subse-
quent CG developments. The transformation for the equivalent 
model is illustrated in Figure 2. 

We should discuss how the affine set variable ( , )C d  is 
obtained in practice. Since there is no prior knowledge on 

{ , , },a aN1 f  we must estimate ( , )C d  from the observation 
{ [ ]} .y n n

L
1=  This can be done by solving an affine set fitting 

(ASF) problem 

[ ] [ ]  ,min y Cx dn n
, ,{ [ ]}

( )
C d

C
x n

N
n

L

1

2
2

1
rank

n
L

1

- -

= -
==

/ (20)

where the rationale is to find an affine set that gives the best fitting
w.r.t. the measured pixels [ ],y n  given knowledge of ;N  see [36] for 
details. The ASF solution is as follows. Let / [ ]yL n1

n

L
y 1
n =

=
/

and / ( [ ] ) ( [ ] )y yL n n1
n
L

y y y
T

1
n nU = - -

=
/  be the sample 

mean and sample covariance of [ ],y n  respectively. Also, let qi

be the ith principal eigenvector of .yU  The solution to (20) is 
given by [ , , ],C q qN1 1f= - .d yn=  There is an interesting 
coincidence here—the ASF solution is exactly the same as 
that of principal component analysis (PCA), which is a com-
monly used DR preprocessing procedure. While ASF and PCA 
turn out to be equivalent, one should note that they were 
derived from different principles: ASF is deterministic and 
concerned with CG-preserving transformation, while PCA is 
statistical and does not exploit CG.

SIMPLEX VOLUME MAXIMIZATION
This subsection focuses on the simplex volume maximization
approach. This approach considers the following problem: 

( )

{ [ ], , [ ]},  , , .

max B

b x x L i N1 1

vol

s.t. conv
B

i f f! = (21)

We will call (21) VolMax for convenience. A picture is illustrated in 
Figure 3(a) to help us explain the aim of (21). We intend to find a 
best-fitting simplex, { , , },b bconv N1 f  by maximizing its volume 
while keeping it inside { [ ], , [ ]} .x x L1conv f  One can imagine 
that if the pure pixel assumption holds, then { [ ], , [ ]}x x L1conv f

is also the true endmembers’ simplex and the maximum volume 
simplex should perfectly match the latter—this is Winter’s intu-
ition when he first introduced VolMax [7]. 

We are interested in simple optimization schemes for pro-
cessing VolMax. Two such schemes are described as follows. 

SUCCESSIVE VOLUME MAXIMIZATION
To facilitate our description, let 

,  ,  [ ]
[ ]

.F
b b

f
b

x
x

n
n

1 1 1 1
N

i
i1 f

f
= = =r; ; ;E E E

It can be shown that [20], [37] 

| ( ) | ,det F P fF k
k

N
2

1
2

2
:( )k1 1= =

=
-% (22)

where F R:i
N i

1 ! #  denotes a submatrix of ,F  obtained by pick-
ing the first i  columns of F.  We see from the simplex volume 
formula in (16a) that maximizing ( )Bvol  is the same as maxi-
mizing (22). In successive volume maximization (SVMAX) [20] 
(also [37]), the principle is to exploit the successive structure of 
(22) to recursively generate an approximate solution to (21). 
Specifically, we carry out the following heuristic: for 

, , ,k N1 f=  determine an estimate 
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{ [ ], , [ ]},arg maxb P f b x x L1s.t. conv
b

Fk k k2
2

:( )
k

k1 1 f!=
=

-

t
t (23)

where F :( )k1 1-
t  is defined in the same way as ,F :( )k1 1-  with bi

replaced by bi
t  for all .i  Essentially, we estimate one endmember 

bk
t  based on the previous endmember estimates , ,b bk1 1f -

t t  and 
partial maximization of (22). Let us complete the SVMAX algo-
rithm by giving the solution to (23) 

[ ], [ ] ;arg maxb x P x n
, ,

Fk k k
n L1 2

2
:( )k1 1, ,= =

f

=

=
-

t t t rt (24)

see [20]. Intriguingly, we have seen this algorithm before—SPA in 
the previous section. To explain, first note that [ ]x nr  can be 
expressed as [ ] [ ],x Fsn n=r  an LMM form. If we apply SPA to 
{ [ ]}x n n

L
1=r  to retrieve ,F  then the resulting SPA is exactly the 

same as SVMAX. Hence, we conclude that SVMAX is also a pure 
pixel search algorithm, and SPA has a “dual” identity in VolMax.

SUCCESSIVE N-FINDR 
We consider an alternative scheme based on alternating optimiza-
tion (AO). The idea is to optimize (21) w.r.t. one bi  at a time, while 
fixing other variables { } .b j j i!  To be specific, given a starting point 

[ , , ],B b bN1 f=t t t  we update each bk
t  via 

: ([ , ]) { [ ], , [ ]}  arg maxb b b x xB L1vol s.t. conv
b

k k k k
k

f!= -
t t

(25)

for , , ,k N1 f=  where B k-
t  denotes a submatrix of Bt  in which 

the kth column is removed. Also, we repeat the AO cycle in (25) 
until some stopping rule (e.g., almost no volume increase) is satis-
fied. The updates in (25) have a closed form 

[ ], [ ] ,arg maxb x P x n
, ,

Fk k k
n L1 2

2
k, ,= =

f

=

=
-

t t t rt (26)

where (26) is obtained by using (22) to turn (25) to (23) (with a 
proper index reordering), and then applying (24). We call the 
resulting algorithm successive N-FINDR (SC-N-FINDR) since it is 
very similar to the SC-N-FINDR proposed in [38]. The pseudocode 
of SC-N-FINDR is given in Algorithm 2. Note that for 

initialization, we can use another algorithm, e.g., SVMAX, or do so 
randomly. There are several interesting connections here. First, 
SC-N-FINDR performs pure pixel search. Following [20, Prop. 1], 
it can be shown that in the noiseless case and under the pure pixel 
assumption, SC-N-FINDR may perfectly identify all the endmem-
bers’ pure pixels within one AO cycle. Second, since 

[ ] [ ],x Fsn n=r  we see from (26) that SC-N-FINDR is performing 
nulling—this time for all other endmember estimates ;F k-

t  cf. the 
nulling in SPA in (9a). Thus, SC-N-FINDR is also a nulling-based 
algorithm. Third, we notice that each AO cycle in SC-N-FINDR is 
essentially the same as the SPA postprocessing strategy we briefly 
discussed in the section “Successive Projections Algorithm,” 
which is provably robust against noise. 

VolMax-based solutions, such as the SVMAX and SC-N-FINDR 
algorithms above, are usually simple and efficient to implement. 
Some further discussions are in order. 

1) Historically, Winter mainly used VolMax to devise the 
N-FINDR concept [7] for pure pixel search. There, the intu-
ition is to update one endmember estimate at a time to itera-
tively increase the volume. N-FINDR is now a popularized 
algorithm class in blind HU, where we can find many 
N-FINDR implementation variants in the literature; see [2], 
[20], and [38]. The SC-N-FINDR we just illustrated is just 
among one of the many N-FINDR variants, although we have 
revealed that SC-N-FINDR has several good characteristics. 

^

b1

b3
b3

b2 b2

b1

^
b1

^
b3

^
b3

^
b2

^
b2

x [n ]
x [n ]

conv{x [1], ···,x [L ]}

b1

^ ^ ^conv{b1, b2, b3}

(a) (b)

[FIG3] (a) Simplex volume maximization. (b) Simplex volume minimization.

Algorithm 2 SC-N-FINDR

input { [ ]} ,x n n
L

1= ,N Bt  (a starting point) 
1: repeat
2: for , ,k N1 f= do
3: : [  ]F B 1T T T=t t

4: : [ ]arg max xP n, , Fk n L1 2
2

k, = f
=

= -
t tt

5: : [ ]b xk k,=t t

6: end for
7: until a stopping rule is satisfied 

output [ , , ] .b bB N1 f=t t t
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2) VolMax is a provably sound criterion from an endmember 
identifiability viewpoint. Specifically, the optimal solution of 
(21) is uniquely the true endmembers’ signatures in the noise-
less case and under the pure pixel assumption [20]. Also, in 
this setup, the optimal solution can be easily retrieved by 
either SC-N-FINDR or SVMAX. However, we should note a fun-
damental caveat—that SC-N-FINDR and SVMAX are not glob-
ally optimal solvers of (21), say, in the presence of noise and/or 
without pure pixels. In fact, (21) is NP-hard in general [37]. 

SIMPLEX VOLUME MINIMIZATION
We turn our attention to the simplex volume minimization 
approach, or simply VolMin, which was first pursued by Craig 
[4] and Boardman [5] in the blind HU context. VolMin is differ-
ent from VolMax. It performs simplex fitting by finding a sim-
plex that encloses all the measured pixels, while yielding the 
minimum volume. This is illustrated in Figure 3(b). Mathemati-
cally, VolMin can be formulated as 

 ( )

 [ ] { , , },  , , .

min B

x b bn n L1

vol

s.t. conv
B

N1 f f! = (27)

VolMin is generally recognized as a more powerful approach 
than VolMax. Let us illustrate this numerically, before describ-
ing VolMin optimization schemes. We simulated a noiseless, 
three endmember case, where the endmembers were taken 
from a spectral library [39] and the abundances synthetically 
generated. Figure 4(a) shows a scenario where the pure pixel 
assumption holds. We see that both VolMax (via SVMAX or SC-
N-FINDR) and VolMin perfectly identify the true endmembers. 
Figure 4(b) shows another scenario where pure pixels are miss-
ing. VolMax is seen to fail, while VolMin can still give accurate 
endmember estimates. Readers are referred to [2], [20], [36], 
and [40]–[43] for more numerical comparisons and real-data 
experiments. Simply speaking, VolMin is numerically found to 
be robust against lack of pure pixels. 

Let us now discuss how VolMin is optimized. VolMin does 
not have simple closed-form schemes as in VolMax, and requires 

numerical optimization. In fact, the VolMin problem in (27) is 
more difficult to handle; a major obstacle is with the simplex 
constraints in (27), which are nonconvex. This issue can be 
overcome by transforming the simplex to a polyhedron (see, 
e.g., [35, pp. 32–33]). To help the reader understand the idea, an 
illustration is given in Figure 5. We see that a simplex can be 
equivalently represented by an intersection of halfspaces, i.e., a 
polyhedron. More precisely, the following equivalence holds for 
an affinely independent { , , }b bN1 f  [36] 

[ ] { , , } [ ] , ( [ ] ) ,x b b Hx g Hx gn n n 10 1conv N
T

1 ,f! $ #- -

(28)

where the RHS is a polyhedron, and

[ , , ] , .H b b b b g HbN N N N1 1
1f= - - =-
- (29)

By the change of variables in (29), and noting (28) and (16b), we
can recast (27) as 

| ( ) |

[ ] , ( [ ] ) ,  ,

max det H

Hx g Hx gn n n10 1s.t. L
,H g

T$ # !- - (30)

where { , , } .L1L f=  The equivalent VolMin problem in (30) is 
arguably easier to handle than the original in (27). Specifically, 
the constraints in (30), which form a data-enclosing polyhe-
dron, are linear (and convex). However, there is still one obsta-
cle—the objective function | ( ) |det H  is nonconvex. Current 

Data Points x [n ] True Endmembers b i SVMAX SC-N-FINDR VolMin CSR

(a) (b) (c)

[FIG4] Numerical comparison of VolMax, VolMin, and sparse regression solutions.

[FIG5] The transformation of a simplex to a polyhedron.
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state-of-the-art methods for VolMin tackle this issue by succes-
sive convex approximation. Specifically, one can apply iterative 
linear approximation to the objective function [40], [44]. 
Another alternative is to perform row-by-row AO w.r.t. ( , )H g
[36]. These two schemes both operate by solving a sequence of 
convex optimization problems; see [36], [40], and [44] for the 
details and comparison. 

We complete this subsection by the following comments. 
1) As mentioned above, numerical evidence suggests that
VolMin may be able to identify the true endmembers accu-
rately in the absence of pure pixels. By analysis, it is known 
that in the noiseless case, the optimal solution of VolMin is 
uniquely the true endmembers’ signatures if the pure pixel 
assumption holds [36]. A proof for the no pure pixel case is 
currently unavailable and is an open fundamental question. 
2) While VolMin is deterministic and geometric based, it has 
a dual identity in stochastic maximum-likelihood (ML) esti-
mation. Specifically, consider the noiseless case, and assume 
that every abundance vector [ ]s n  is i.i.d. uniformly distrib-
uted on the support of unit simplex .S  Then, it can be shown 
that the corresponding ML estimator is the same as the 
equivalent VolMin problem in (30) [42]. Note that the 
authors in [42] also consider a generalization where the 
abundance prior distribution is nonuniform. 

FURTHER DISCUSSION
The CG framework presented above is based on exploitation of 
the simplex { , , } .a aconv N1 f  There is an alternative CG formu-
lation where the simplex { , , , }a a0conv N1 f  is utilized [40]–
[42]; the concepts are identical, though the resulting 
algorithms exhibit minor differences. Readers should also note 
other CG interpretations, e.g., [45]. For tutorial purposes, we 
have focused on the noiseless case only. In the presence of spec-
trally i.i.d. noise, the ASF preprocessing stage (or equivalently 
PCA) can be shown to be noise resistant. However, for non-i.i.d. 
noise, HySime [46] may provide better DR performance. More-
over, both VolMax and VolMin can be modified to improve 
robustness against noise; e.g., soft constraints [41], chance con-
straints [43], and robust max-min volume [20]. CG is known to 
be sensitive to outliers. A robust ASF can be used to identify and 
discard outliers, before they get into the data [47]. Soft con-
straints also help “desensitize” VolMin w.r.t. the outliers [41]. 

DICTIONARY-BASED SEMIBLIND HU
This section describes a relatively new development, where HU
is performed by using spectral libraries and techniques arising 
in compressive sensing (CS). This approach also has a link to 
sensor array processing in SP, as we will discuss. 

SPARSE REGRESSION
When performing blind HU, we generally assume no informa-
tion on the spectral shapes of the true endmember signatures. 
The latter is not totally true. In geoscience and remote sensing, 
a tremendous amount of effort has been spent on measuring 
and recording spectral samples of many different materials, 

which has resulted in spectral libraries for various research pur-
poses. For example, the U.S. Geological Survey (USGS) Library, 
which has taken over 20 years to assemble, contains more than 
1,300 spectral samples covering materials such as minerals, 
rocks, liquids, artificial materials, vegetations, and even micro-
organisms [39]. Such valuable knowledge base can be turned to 
blind HU purposes, or more precisely, semiblind HU. 

A slight abuse of notations is required to explain the semib-
lind formulation. We redefine [ , , ]A a a RK

M K
1 f != #  as a 

dictionary of K  hyperspectral samples, where each ai  corre-
sponds to one material (each ai  is also assumed to have been 
appropriately processed, e.g., atmospherically compensated). We 
assume that the dictionary A  is known, obtained from an avail-
able spectral library, and that the true endmembers in each 
measured pixel [ ]y n  are covered by the dictionary. The mea-
sured pixels in the noiseless case (again, for tutorial purposes) 
can then be represented by 

[ ] [ ],y an s ni
i S

i
n

=
!

/ (31)

where { , , }S K1n f3  is an index subset that indicates the mate-
rials present in the measured pixel [ ],y n  and [ ] ,s n i S0i n2 !

are the corresponding abundances. In this representation, note 
that the sum-to-one constraint [ ]s n 1ii Sn

=
!
/  may not hold; 

the measurement conditions of library samples and the actual 
scene are often different and this can introduce scaling inconsis-
tencies between the library samples and true endmembers. By 
also letting [ ]s n 0i =  for all ,i Sn"  (31) can be written as 

[ ] [ ],y Asn n= (32)

where [ ] [ [ ], , [ ]]s n s n s n RK
T K

1 f !=  is now a sparse abun-
dance vector. The problem now is to recover [ ]s n  from [ ] .y n
This is not trivial because we often have K M2  and the corre-
sponding system in (32) is underdetermined. However, we know 
beforehand that [ ]s n  have only a few nonzero components, 
since the number of materials present in one pixel is often very 
small, typically within five. Hence, a natural formulation for the 
semiblind HU problem is to find the sparsest [ ]s n for the rep-
resentation in (32). This inference problem turns out to be 
identical to that investigated in CS, where the objective is to 
recover a sparse representation of a signal on a given frame 
from compressive measurements [48]. This connection allows 
us to capitalize on the wealth of theoretical and algorithmic 
results available in the CS area. 

The sparse regression (SR) problem we describe above can 
be formulated as 

 [ ]  [ ] [ ],  min s y Asn n ns.t.
[ ]s n 0 = (33)

for each , , ,n L1 f=  where [ ]s n 0  denotes the number of 
nonzero elements in [ ] .s n  The above SR problem possesses 
provably good endmember identifiability. Specifically, (33) is 
known to have a unique solution if the true sparse abundance 
vector [ ]s n  satisfies 
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[ ] ( ),s An
2
1 · spark0 1 (34)

where ( )Aspark  is the smallest number of linearly dependent 
columns of A  [49]. Since every [ ]s n  is highly sparse by nature, 
(34) should hold in practice. The consequent implication is 
meaningful—the SR problem (33) can perfectly identify all the 
true endmembers in general. 

While the SR approach sounds promising, there are chal-
lenges. Since (33) is NP-hard in general, it is natural to seek 
approximate solutions. Let us consider the popularized 1,  relax-
ation solution to (33): 

 [ ] [ ] [ ],min s y Asn n ns.t.
[ ]s n 1 = (35)

which is convex and has efficient solvers. The CS literature has a
series of analysis results telling when (35) gives the same solution 
as (33), or simply sufficient conditions for exact recovery. Those 
sufficient conditions usually depend on the conditioning of .A
For example, one sufficient exact recovery condition for (35) is 

[ ] ( / ) ( ( )),s An 1 2 10
11 n+ -  where 

( )
| |

maxA
a a

a a,i j K
i j

i j

i
T

j

1 2 2
n =

!

# #
(36)

is called the mutual coherence of A  [49]. Unfortunately, spec-
tral libraries in practice are strongly correlated, yielding ( )An
almost being one [50]. A similar issue also occurs in other suffi-
cient conditions, particularly in the restricted isometry property  
[48]. Thus, one may not obtain a desirable SR solution from a 
straight 1,  relaxation application. 

However, all is not lost. Recall that every [ ]s n  is, by nature, 
nonnegative. Let us consider a nonnegative 1,  relaxation prob-
lem, which is (35) plus the nonnegative constraint [ ] .s n 0$  As 
it turns out, exploiting nonnegativity helps a lot. There is a 
large amount of experimental evidence that indicates that non-
negative 1,  relaxation can yield useful unmixing results [2], 
[50], [51]. Also, nonnegative 1,  relaxation is theoretically 
proven to be able to give rather sparse solutions for certain 
classes of A  [52]. Although the above noted theoretical result 
does not give a direct answer to exact recovery under highly 
correlated libraries, it gives good insight on the capability of 
nonnegative 1,  relaxation. 

We can also combat the spectral library mutual coherence 
issue by using the multiple-measurement vector (MMV) formula-
tion [53], which exploits the fact that in a given data set all the 
spectral vectors are generated by the same subset of library signa-
tures, corresponding to the endmember signatures. Let 

[ [ ], , [ ]]S s s L1 RK Lf != #  and [ [ ], , [ ]] ,Y y y L1 RM Lf != #

so that we can write .Y AS=  Also, define S 0row-  to be the 
number of nonzero rows in ;S  i.e., | ( ) | ,S Srowsupp0row =-

( ) { | } .S si K1 0rowsupp i !# #=  We consider a collaborative 
SR (CSR) problem [54] 

,min Y ASS s.t.
S row 0 =- (37)

where the rationale is to use the whole set of measured pixels,
rather than one, to strengthen SR performance. It is interesting 
to note that S 0row-  also represents the number of endmem-
bers. Like the previous SR problem, we can apply a convex 
relaxation to CSR by replacing S 0row-  in (37) by ,S ,2 1  where 

.S s,
/

p q
i

p
q

i
k q

1

1
=

=
` j/  In theory, there is no extra benefit in 

using the CSR or MMV formulation in the worst-case sense 
(think about a special and rather unrealistic case where 

[ ] [ ])s s L1 g= =  [53]. However, an average analysis in [55] 
gives an implication that increasing the number of measure-
ments (or pixels here) can significantly reduce the probability of 
recovery failure. In practice, this has been found to be so. Also, 
the nonnegativity constraint S 0$  can be incorporated in (37) 
to improve performance. 

A practical SR or CSR solution should also cater for the pres-
ence of noise. For CSR, the following alternative convex relax-
ation formulation may be used to provide HU [54] 

min Y AS S ,F
2

2 1S 0
m- +

$
(38)

for some constant .02m  The rationale is to seek an LS data fit-
ting, rather than exact, with a sparsity-promoting regularizer 

.S ,2 1m  It is important to note that while (38) is convex, it is a 
large-scale optimization problem. An efficient solver for (38) is 
provided in [54], where a divide-and-conquer optimization 
strategy, specifically, the alternating direction method of multi-
pliers (ADMM), was implemented. 

At this point readers may be wondering: How do we compare 
SR- and CG-based solutions? Simply speaking, CG relies on 
exploitation of simplex structures, while SR does not. To illus-
trate, consider the previous numerical example in Figure 4. In 
Figure 4(c), we generated a heavily mixed (and noiseless) sce-
nario where data do not possess simplex structures expected in 
CG. It is seen that even VolMin fails in this scenario. However, 
CSR, which was run under the USGS Library with 498 spectral 
signatures, is seen to be able to identify the true endmembers 
perfectly. Note that the true endmember signatures were taken 
from the same library, which makes the setting slightly ideal. It 
would not be too surprising that if the library fails to cover all 
true endmember signatures (e.g., a new material), then SR 
solutions would fail. For further numerical results and real-data 
experiments, see [2], [50], [54], [56], and [57]. 

SENSOR ARRAY PROCESSING MEETS SEMIBLIND HU
MMV is a powerful concept that has been applied to estimation
problems in statistical SP and sensor array processing [58]. 
Curiously, a classical concept originated from sensor array pro-
cessing, specifically, subspace methods, also finds its way to 
MMV research [59]—this provides yet another opportunity for 
semiblind HU [56]. 

The idea is simple for readers who are familiar with subspace 
methods or sensor array processing; or, see classical literatures 
such as [17]. Consider the block model Y AS=  (again, assum-
ing no noise). Let ( )SS rowsupp=  be the set of indices of 
active materials in the measured data ,Y  and AS  be a submatrix 
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of A  whose columns are { } .ai i S!  Note that AS  is the true end-
member matrix. Let us assume that { } ,si

i S!  the set of true 
abundance maps, is linearly independent; in practice this refers 
to situations where the abundance maps are sufficient different. 
Then, one can easily deduce that ( ) ( ),Y AR R S=  where R
denotes the range space of its argument. The above expression 
implies that 

P a k S0Y k , !== (39)

for all ,k K1 # #  as far as { } { }a a { }\k i i S k, !  is linearly indepen-
dent for any .k K1 # #  Since the latter holds for | |S 1 1+

( ),Aspark  we have the following endmember identifiability con-
dition for (39): 

( ) .S A 1spark0row 1 -- (40)

Remarkably, with the mild assumption of linear independence 
of { } ,si

i S!  we can achieve such provably good endmember iden-
tifiability by the simple subspace projection in (39). 

In practice, the identification in (39) can be implemented by 
the classical multiple signal classification (MUSIC) method [17]; 
see [56] for implementation details. 

FURTHER DISCUSSION
There are a few more points to note. 

1) As a side advantage, the SR approach does not require
knowledge of the number of endmembers .N  Note that this 
does not apply to the subspace approach, which often 
requires knowledge of N  to construct subspace projections. 
2) Hyperspectral signals are very often piecewise smooth
w.r.t. their three dimensional domain (one spectral dimen-
sion plus two spatial dimensions). Therefore, one can exploit 
such spatial/spectral contextual information for improving 
SR performance by applying piecewise smooth regulariza-
tion, such as total variations (TVs) [57], on top of an SR for-
mulation, e.g., (38). 
3) An interesting (but also elusive) question is whether a
given dictionary can truly cover the true endmembers. From 
an end user’s viewpoint, it depends on the scene and whether 
one can preselect a reliable library for that scene specifically. 
Moreover, there are concurrent studies that consider learning 
the dictionary from the data, thereby circumventing these 
issues [51], [60], [61]. Dictionary learning is an active 
research topic. It is also related to NMF, to be described in the 
next section. In addition, there has been interest in using the 
measured data Y  itself as the dictionary for MMV [62]. This 
self-dictionary MMV (SD-MMV) approach is related to pure 
pixel search. For example, SPA and VCA can both be derived 
from SD-MMV [63]. 

NONNEGATIVE MATRIX FACTORIZATION
This section turns the attention back to blind HU, where we 
review a class of algorithms known as nonnegative matrix fac-
torization (NMF). 

NMF was originally proposed as a linear DR tool for analyzing 
environmental data [64] and for data mining applications [65]. It 
is posed as a low-rank matrix approximation problem where, 
given a data matrix ,Y RM L! #  the task is to find a pair of non-
negative matrices ,A RM N! # ,S RN L! #  with { , },minN M L1
that solves 

.min Y AS
,A S F0 0

2-
$ $

(41)

In blind HU, the connection is that the NMF factors obtained, A
and S,  can serve as estimates of the endmembers and abun-
dances, respectively (note that endmember spectral signatures 
are nonnegative by nature). However, there are two problems 
here. First, (41) is NP-hard in general [66]. For this reason, opti-
mization schemes we see in the current NMF-based blind HU 
developments are rather pragmatic. We should, however, men-
tion that lately, there are new theory-guided NMF developments 
in optimization [67], [68]. Second, NMF may not guarantee solu-
tion uniqueness. This is a serious issue to the blind HU applica-
tion, since it means that an NMF solution may not necessarily be 
the true endmembers and abundances, even in the noiseless case. 

In blind HU, NMF is modified to fit the problem better. 
Roughly speaking, we may unify many NMF-based blind HU 
developments under one formulation 

( ) ( ),min Y AS A Sg h· ·
,A S

F
2

0 SL
m n- + +

$ !
(42)

where { |  [ ] , [ ] , },S s sn n n L1 10 1SL T$ # #= = g  and h
are regularizers, which vary from one work to another, and 

, 02m n  are some constants. In particular, the addition of g
and h  is to make (42) more well posed through exploitation of 
the problem natures. Also, for the same reason, we incorporate 
the unit simplex constraints on .S

In the literature, one can find a plethora of NMF-based blind 
HU algorithms—each work may use different , ,g h  modified con-
straints for simpler implementations (e.g., no constraints on ),A
and a different optimization algorithm. Our intention here is not 
to give an extensive coverage of all these developments. Instead, 
we are interested in several representative NMF-based blind HU 
formulations, where we will see connections between NMF, CG, 
and SR. A summary of those formulations is shown in Table 1. 

Although we see many choices with the regularizers g  and 
,h  the philosophies behind the choices follow a few core princi-

ples. For the endmember regularizer ,g  the principle can be 
traced back to VolMin in CG. A classical example is minimum 
volume constrained NMF (MVC-NMF) [69] 

,( ( ))min Y AS B· volF
2 2

,A S0 SL
m+-

$ !

(43)

where ( )Bvol  is the simplex volume corresponding to ,A  in 
which ( )b C a di i= -@  for all ;i  cf. the section “Convex Geome-
try.” MVC-NMF is essentially a variation of the VolMin formula-
tion [see (27)] in the noisy case, with endmember nonnegativity 
incorporated. As mentioned before, )Bvol (  is nonconvex. Iter-
ated constrained endmember (ICE) [70] and sparsity promoting 
ICE (SPICE) [73] avoid this issue by replacing ( ( ))Bvol 2  with a 
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convex surrogate, specifically, ( ) ,A a ag NN
i jj ii 2

2
11

1= -
= +=

- //
which is the sum of differences between vertices. A similar idea 
is also adopted in collaborative NMF (CoNMF) [74]; see Table 1. 

As for the abundance regularizer ,h  the design principle 
usually follows that of sparsity. A good showcasing example, 
curiously, lies in dictionary learning (DL) [60]  

;min Y AS S·
, ,A S F0

2
1 10

n- +
$ $

(44)

note that [ ] .S s n, ii

N

n
L

1 1 11
=

==
//  The original idea of (44) 

is to learn the dictionary A  by joint dictionary and sparse signal 
optimization; cf. the section “Dictionary-Based Semiblind HU” 
and, in particular, (38). However, (44) can also be seen as an 
NMF with sparsity-promoting regularization. Following the 
same spirit, L /1 2 -NMF [71] uses a nonconvex, but stronger spar-
sity-promoting regularizer based on the /1 2,  quasinorm. Apart 
from sparsity, exploitation of spatial contextual information via 
TV regularization may also be used [72]. 

The aforementioned connection between DL and NMF pro-
vides an additional insight. In DL, the dictionary size is often 
set to be large, and should be larger than the true number of 
endmembers; the number of endmembers is instead deter-
mined by the row sparsity of ,S  i.e., .S 0row-  From an NMF-
based blind HU perspective, this means that we can use row 
sparsity to provide joint endmember number, endmember and 
abundance estimation. More formally, consider a blind version 
of the MMV (38) 

,( )min Y AS A Sg· ·
,A S

F
2

0
0

row
SL

m n- + +
$ !

- (45)

where the number of columns of ,A  given by ,N  is now chosen 
to be a number greater than the true number of endmembers 
(say, by overestimating the latter), and we use S 0row-  to repre-
sent the endmember number. SPICE is arguably the first algo-
rithm that explores such opportunity [73]. In SPICE, the 
abundance regularizer can be expressed as ( )S sh

i
N

i
i

1 1c=
=
/

for some weights { }ic  that are iteratively updated; this regular-
izer is a convex surrogate of .S 0row-  CoNMF also aims at row 
sparsity, using a nonconvex surrogate ( ) ,S sh

i
K i p

21
=

=
/

p0 11 #  [74]. 

We should also discuss optimization in NMF-based blind HU. 
Most NMF-based blind HU algorithms follow a two-block AO 
strategy, although their implementation details exhibit many 
differences. Two-block AO optimizes (42) w.r.t. either A  or S
alternatingly. Specifically, it generates a sequence of iterates 
{( , )}A S( ) ( )k k

k  via 

( )arg minA Y AS Ag·( ) ( )k k
F

1 2

A 0
m= - +-

$
(46a)

( ) .arg minS Y A S Sh·( ) ( )k k
F
2

S SL
n= - +

!

(46b)

Note that if g  and h  are convex, then (46a)–(46b) are convex 
and hence can usually be solved efficiently. Moreover, every 
limit point of {( , )}A S( ) ( )k k

k  is a stationary point of (42) under 
some fairly mild assumptions [75], [76]. For practical reasons, 
most algorithms use cheap but inexact updates for (46a) and 
(46b), e.g., multiplicative update [71], one-step projected gradi-
ent or subgradient update [60], [69], [72], and one-step 
majorization minimization [74]. Convergence to a stationary 
point of these inexact AO methods has still to be thoroughly 
analyzed. However, by numerical experience, many NMF-based 
blind HU algorithms work well under appropriate settings (e.g., 
using reasonable initializations that can be obtained, e.g., with 
VCA or N-FINDR). 

To summarize, NMF is a versatile approach that has connec-
tions to both CG and SR. It leads to a fundamentally hard opti-
mization problem, although practical solutions based on 
two-block AO usually offer good performance by experience. 
Also, we should highlight that the more exciting developments 
of NMF-based blind HU lie in extensions to scenarios such as 
nonlinear HU [77], EV [78], and multispectral and hyperspectral 
data fusion [79]. Such extensions may not be easily achieved in 
other approaches. 

CONCLUSIONS
This article provided a tutorial review on blind HU techniques
using a fundamental SP perspective. Four major blind HU 
approaches—pure pixel search, convex geometry, sparse regres-
sion, and NMF—have been studied. We briefly compare their 
advantages and drawbacks. Pure pixel search and VolMax are very 
simple but require the pure pixel assumption; VolMin is resistant 

[TABLE1] A SUMMARY OF SOME NMF FORMULATIONS.

ALGORITHM ( )Ag ( )Sh OPTIMIZATION SCHEMES AND REMARKS

MVC-NMF [69] ( ( ))C A d1vol T2 -@ 0 AO + ONE-STEP PROJECTED GRADIENT

ICE [70] a aN
i jj ii

N
2
2

11
1 -

= +=

- // 0 AO; UNCONSTRAINED A

DL [60] 0 S ,1 1 AO + ONE-STEP PROJECTED GRADIENT FOR ;A S 0$

L /1 2 -NMF [71] 0 S / , /
/

1 2 1 2
1 2 AO + MULTIPLICATIVE UPDATE

APS [72] 0 [ ] [ ]n js s
( )n

L

j n 11 N
-

!=
//  WHERE ( )nN IS THE

NEIGHBORHOOD PIXEL INDEX SET OF PIXEL .n
AO + ONE-STEP PROJECTED SUBGRADIENT

SPICE [73] a a
j i

N

i
N

i j 2
2

11
1 -

= +=

- // s
i

N
i

i
1 1c
=
/ AO; UNCONSTRAINED ;A ITERATIVELY REWEIGHTED

ic VIA : / ,[ ]S1 ( )
, :i

k
i L

1
1 1c = - i N1 # #

CoNMF [74] a
i

N
i y 2

2
1

n-
=
/ ,s

i
N i p

21=
/ p0 11 # AO + ONE-STEP MAJORIZATION MINIMIZATION;

UNCONSTRAINED A
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to lack of pure pixels but still has limitations when data are too 
heavily mixed; sparse regression holds great potential in unmixing 
heavily mixed data but one should be aware of its reliance on dic-
tionaries; NMF is a very flexible formulation for blind HU but leads 
us to a hard optimization problem to solve. Also, real hyperspec-
tral data can be quite elusive at times, where we may be faced with 
issues such as outliers, modeling errors, and uncertainty in the 
number of endmembers. Their subsequent effects on the afore-
mentioned approaches could be substantial. On the other hand, 
the need for meeting these challenges also makes HU continue to 
be a vibrant and active field of research. 
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hen considering the problem of unmixing 
hyperspectral images, most of the literature 

in the geoscience and image processing 
areas relies on the widely used linear mixing 

model (LMM). However, the LMM may be not 
valid, and other nonlinear models need to be considered, for 
instance, when there are multiscattering effects or intimate inter-
actions. Consequently, over the last few years, several significant 
contributions have been proposed to overcome the limitations 
inherent in the LMM. In this article, we present an overview of 
recent advances in nonlinear unmixing modeling. 

MOTIVATION FOR NONLINEAR MODELS
Spectral unmixing (SU) is widely used for analyzing hyperspectral 
data arising in areas such as remote sensing, planetary science 
chemometrics, materials science, and other areas of microspec-
troscopy. SU provides a comprehensive and quantitative mapping 
of the elementary materials that are present in the acquired data. 
More precisely, SU can identify the spectral signatures of these 
materials (usually called endmembers) and can estimate their 
relative contributions (known as abundances) to the measured 
spectra. Similar to other blind source separation tasks, the SU 
problem is naturally ill posed and admits a wide range of admissi-
ble solutions. As a consequence, SU is a challenging problem that 
has received considerable attention in the remote sensing, signal, 
and image processing communities [1]. Hyperspectral data analy-
sis can be supervised, when the endmembers are known, or 
unsupervised, when they are unknown. Irrespective of the case, 
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most SU approaches require the definition of the mixing model 
underlying the observations. A mixing model describes in an ana-
lytical fashion how the endmembers combine to form the mixed 
spectrum measured by the sensor. The abundances parametrize 
the model. Given the mixing model, SU boils down to estimating 
the inverse of this formation process to infer the quantities of 
interest, specifically the endmembers and/or the abundances, 
from the collected spectra. Unfortunately, defining the direct 
observation model that links these meaningful quantities to the 
measured data is a nontrivial issue, and requires a thorough 
understanding of complex physical phenomena. A model based 
on radiative transfer (RT) could accurately describe the light scat-
tering by the materials in the observed scene [2] but would lead 
to very complex unmixing problems. Fortunately, invoking sim-
plifying assumptions can lead to exploitable mixing models. 

When the mixing scale is macroscopic and each photon 
reaching the sensor has interacted with just one material, the 
measured spectrum y Rp

L!  in the thp  pixel can be accurately 
described by the LMM 

,ay m n,p r p
r

R

r p
1

= +
=

/ (1)

where L  is the number of spectral bands, R  is the number of 
endmembers present in the image, mr  is the spectral signa-
tures of the thr  endmember, a ,r p  is the abundance of the thr
material in the thp  pixel and n p  is an additive term associ-
ated with the measurement noise and the modeling error. 
The abundances can be interpreted as the relative areas 
occupied by the materials in a given image pixel [3]. Thus it 
is natural to consider additional constraints regarding the 
abundance coefficients a ,r p
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In that case, SU can be formulated as a constrained blind 
source separation problem, or constrained linear regression, 
depending on the prior knowledge available regarding the end-
member spectra. 

Due to the relative simplicity of the model and the straight-
forward interpretation of the analysis results, LMM-based 
unmixing strategies predominate in the literature. All of these 
techniques have been shown to be very useful whenever the 
LMM represents a good approximation to the actual mixing. 
There are, however, practical situations in which the LMM is 
not a suitable approximation [1]. As an illustrative example, 
consider a real hyperspectral image, composed of L 160=  spec-
tral bands from the visible to near infrared, acquired in 2010 by 
the airborne Hyspex hyperspectral sensor over Villelongue, 
France. This image, with a spatial resolution of 0.5 m, is repre-
sented in Figure 1(a). From primary inspection and prior 
knowledge coming from available ground truth, the 50 50#

pixel region of interest depicted in Figure 1(c) is known to be 
composed of mainly R 3=  macroscopic components (oak tree, 
chestnut tree, and an additional nonplanted-tree component). 
When considering the LMM to model the interactions between 

these R 3=  components, all the observed pixels should lie in a 
two-dimensional linear subspace, that can be easily identified by 
a standard principal component analysis (PCA). Conversely, if 
nonlinear effects are present in the considered scene, the 
observed data may belong to a two-dimensional nonlinear man-
ifold. In that case, more complex nonlinear dimension reduc-
tion procedures need to be considered to accurately represent 
the data. The accuracy of these dimension reduction procedures 
in representing the data set into a two-dimensional linear or 
nonlinear subspace can be evaluated thanks to the average 
reconstruction error (ARE), defined as 

,
LP
1ARE y yp p

p

P
2

1
= -

=

t/ (3)

where yn  are the observed pixels and ynt  the corresponding esti-
mates, and ,P 2 500=  is the number of pixels. Here we contrast 
two approaches, a locally linear Gaussian process latent variable 
model (LL-GPLVM) introduced in [4] and PCA. When using PCA 
to represent the data, the obtained ARE is .8 4 10 3# -  while 
using the LL-GPLVM, the ARE is reduced to . .7 9 10 3# -  This 
demonstrates that the investigated data set should be preferably 
represented in a nonlinear subspace, as clearly demonstrated in 
Figure 1(b), where the nonlinear simplex identified by the fully 
constrained LL-GPLVM has been represented as blue lines. For 
the studied hyperspectral image, the nonlinearity seems to be 
weak, which is often the case for most real applications. How-
ever, the models and algorithms presented in this article are 
also interested for more severe nonlinearities, for instance 
encountered when analyzing mineral data set. 

Consequently, more complex mixing models need to be 
considered to cope with nonlinear interactions. These models 
are expected to capture important nonlinear effects that are 
inherent characteristics of hyperspectral images in several 
applications. They have proven essential to unveil meaningful 
information for the geoscience community [5]–[10]. Several 
approximations to the RT theory have been proposed, such as 
Hapke’s bidirectional model [3]. Unfortunately, these models 
require highly nonlinear and integral formulations that hinder 
practical implementations of unmixing techniques. To over-
come these difficulties, several physics-based approximations 
of Hapke’s model have been proposed, mainly in the spectros-
copy literature (e.g., see [3]). However, despite their wide 
interest, these approximations still remain difficult to apply 
for automated hyperspectral imaging. In particular, for such 
models, there is no unsupervised nonlinear unmixing algo-
rithm able to jointly extract the endmembers from the data 
and estimate their relative proportions in the pixels. Mean-
while, several approximate but exploitable non-LMMs have 
been recently proposed in the remote sensing and image pro-
cessing literatures. Some of them are similarly motivated by 
physical arguments, such as the class of bilinear models intro-
duced later. Others exploit a more flexible nonlinear mathe-
matical model to improve unmixing performance. Developing 
effective unmixing algorithms based on non-LMMs represents 
a challenge for the signal and image processing community. 
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Supervised and unsupervised algorithms need to be designed to 
cope with nonlinear transformations that can be partially or 
totally unknown. Solving the nonlinear unmixing problem 
requires innovative approaches to existing signal processing 
techniques. 

More than ten years after Keshava and Mustard’s compre-
hensive review article on spectral unmixing [11], this article 
provides an updated review focusing on nonlinear unmixing 
techniques introduced in the past decade. In [11], the problem 
on nonlinear mixtures was thoroughly addressed but, at that 
time, very few algorithmic solutions were available. Capitalizing 
on almost one decade of advances in solving the linear unmix-
ing problem, scientists from the signal and image processing 
communities have developed, and continue to do so, automated 
tools to extract endmembers from nonlinear mixtures, and to 
quantify their proportions in nonlinearly mixed pixels. 

NONLINEAR MODELS
In [1], it is explained that linear mixtures are reasonable when 
two assumptions are wholly fulfilled. First the mixing process 
must occur at a macroscopic scale [12]. Second, the photons 
that reach the sensor must interact with only one material, as is 
the case in checkerboard type scenes [13]. An illustration of this 
model is depicted in Figure 2(a) for a scene composed of two 
materials. When one of these two assumptions does not hold, 
different nonlinear effects may occur. Two families of nonlinear 
models are described in what follows. 

INTIMATE MIXTURES
The first assumption for linear mixtures is a macroscopic mix-
ing scale. However, there are common situations when inter-
actions occur at a microscopic level. The spatial scales 
involved are typically smaller than the path length followed by 

0.1
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[FIG1]  (a) Real hyperspectral Madonna data acquired by the Hyspex hyperspectral scanner over Villelongue, France. (b) The 
representation of the ,P 2 500=  pixels (black dots) of the data and boundaries of the estimated nonlinear simplex (blue lines). (c) The 
region of interest shown in true colors.
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the photons. The materials are said to be intimately mixed [3]. 
Such mixtures have been observed and studied for some time, 
e.g., for imaged scenes composed of sand or mineral mixtures 
[14]. They have been advocated for analyzing mixtures 
observed in laboratory [15]. Based on RT theory, several theo-
retical frameworks have been derived to accurately describe 
the interactions suffered by the light when encountering a 
surface composed of particles. 

An illustration of these interactions is represented in Fig-
ure 2(b). Probably the most popular approaches dealing with 
intimate mixtures are those of Hapke in [3] since they involve 
meaningful and interpretable quantities that have physical sig-
nificance. Based on these concepts, several simplified non-
LMMs have been proposed to relate the measurements to 
some physical characteristics of the endmembers and to their 
corresponding abundances (that are associated with the rela-
tive mass fractions for intimate mixtures). In [2], the author 
derives an analytical model to express the measured reflectances 
as a function of parameters intrinsic to the mixtures, e.g., the 
mass fractions, the characteristics of the individual particles 
(density, size) and the single-scattering albedo. Other popular 
approximating models include the discrete-dipole approxima-
tion [16] and the Shkuratov’s model [17] (interested readers are 
invited to consult [3] or the more signal processing-oriented 
papers [18] and [19]). However these models also strongly 
depend on parameters inherent to the experiment since it 
requires the perfect knowledge of the geometric positioning of 
the sensor with respect to the observed sample. This depen-
dency upon external parameters makes the inversion (i.e., the 
estimation of the mass fractions from the collected spectra) very 
difficult to implement and, obviously, even more challenging in 
a unsupervised scenario, i.e., when the spectral signatures of the 
materials are unknown and need to be also recovered. 

More generally, it is worth noting that the first requirement 
of having a macroscopic mixing scale is intrinsically related to 
the definition of the endmembers. Indeed, defining a pure mate-
rial requires specification of the spatial or spectral resolution, 
which is application dependent. Consider a simple scene com-
posed of three materials , , and .A B C  It is natural to expect 
retrieval of these components individually when analyzing the 
scene. However, in other circumstances, one may be interested 

in the material components themselves, for instance, 
, , , , ,B B CA A1 2 1 2 1  and C2 if we assume that each material is 

composed of two constituents. In that case, pairs of subcompo-
nents combine and, by performing unmixing, one might also be 
interested in recovering each of these six components. Con-
versely, it may be well known that the material A  can never be 
present in the observed scene without the material .B  In such a 
case, unmixing would consist of identifying the couple A B+
and ,C  without distinguishing the subcomponent A  from the 
subcomponent .B  This issue is frequently encountered in auto-
mated spectral unmixing. To circumvent this difficulty in defin-
ing the mixture scale, it makes sense to associate pure 
components with individual instances whose resolutions have 
the same order of magnitude than the sensor resolution. For 
example, a patch of sand of spatially homogeneous composition 
can be considered as a unique pure component. In that case, 
most of the interactions occurring in most of the scenes of 
interest can be reasonably assumed to occur at a macroscopic 
level, at least when analyzing airborne and spaceborne remotely 
sensed images. 

BILINEAR MODELS
Another type of nonlinear interaction occurs at a macroscopic 
scale, in particular in so-called multilayered configurations. One 
may encounter this nonlinear model when the light scattered by a 
given material reflects off other materials before reaching the sen-
sor. This is often the case for scenes acquired over forested areas, 
where there may be many interactions between the ground and 
the canopy. An archetypal example of this kind of scene is shown 
in Figure 2(c). 

Several models have been proposed to analytically describe 
these interactions. They consist of including powers of products of 
reflectance. However they are usually employed such that interac-
tions of orders greater than two are neglected. The resulting mod-
els are known as the family of the bi-LMMs. Mathematically, for 
most of these bilinear models, the observed spectrum y Rp

L!  in 
L  spectral bands for the ith pixel is approximated by the following 
expansion: 
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[FIG2] (a) The LMM: the imaged pixel is composed of two materials. (b) Intimate mixture: the imaged pixel is composed of a 
microscopic mixture of several constituents. (c) Bilinear model: the imaged pixel is composed of two endmembers: tree and soil. 
In addition to the individual contribution of each material, bilinear interactions between the tree and the soil reach the sensor.

(a) (b) (c)
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where 9  stands for the termwise (Hadamard) product 
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In the right-hand side of (4), the first term, also found in (1), sum-
marizes the linear contribution in the mixture while the second 
term models nonlinear interactions between the materials. The 
coefficient , ,i j pb  adjusts the amount of nonlinearities between the 
components mi  and m j  in the thp  pixel. Several alternatives for 
imposing constraints on these nonlinear coefficients have been 
suggested. Similarly to [10], Nascimento and Dias assume in [20] 
that the (linear) abundance and nonlinearity coefficients obey 
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It is worth noting that, from (5), this Nascimento model (NM), 
also used in [21], can be interpreted as an LMM with additional 
virtual endmembers. Indeed, considering m mi j9  as a pure 
component spectral signature with corresponding abundance 

,, ,i j pb  the model in (5) can be rewritten 

ay m n,p s p
s

R

s p
1

= +
=

u u
u

/
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and ( / ) ( ) .R R R1 2 1= +u  This NM reduces to the LMM when 
a 0,s p =u  for , , .s R R1 f= + u

Conversely, in [9], Fan and his coauthors have fixed the non-
linearity coefficients as functions of the (linear) abundance coef-
ficients themselves: a a, , , ,i j p i p j pb = ( ) .i j!  The resulting model, 
called the Fan model (FM) in what follows, is fully described by 
the mixing equation 

a a ay m m m n, , ,p r p
r

R

r i p
j i

R

i

R

j p i j p
1 11

1

9= + +
= = +=

-

/ // (6)

subject to the constraints in (2). One argument to explain the 
direct relation between the abundances and the nonlinearity 
coefficients is the following: if the ith endmember is absent in 
the thp  pixel, then a 0,i p =  and there are no interactions 
between mi  and the other materials m j ( ) .j i!  More gener-
ally, it is quite natural to assume that the quantity of nonlinear 
interactions in a given pixel between two materials is directly 
related to the quantity of each material present in that pixel. 
However, it is clear that this model does not generalize the 
LMM, which can be a restrictive property. 

More recently, to alleviate this issue, the generalized bilin-
ear model (GBM) has been proposed in [22] by setting 

a a, , , , , ,i j p i j p i p j pb c=

,a a ay m m m n, , , , ,p r p
r

R

r i j p
j i

R

i

R

i p j p i j p
1 11

1

9c= + +
= = +=

-

/ // (7)

where the interaction coefficient ( , )0 1, ,i j p !c  quantifies the 
nonlinear interaction between the spectral components mi  and 

.m j  This model has the same interesting characteristic as the 
FM: the amount of nonlinear interactions is governed by the 
presence of the endmembers that linearly interact. In particular, 
if an endmember is absent in a pixel, there is no nonlinear 
interaction supporting this endmember. However, it also has 
the significant advantage of generalizing both the LMM when 

0, ,i j pc =  and the FM when .1, ,i j pc =  Having 0, ,i j p 2c  indicate 
that only constructive interactions are considered. 

For illustration, synthetic mixtures of R 3=  spectral com-
ponents have been randomly generated according to the LMM, 
NM, FM, and GBM. The resulting data set are represented in 
the space spanned by the three principal eigenvectors (associ-
ated with the three largest eigenvalues of the sample covari-
ance matrix of the data) identified by a principal component 
analysis in Figure 3. These plots illustrate an interesting prop-
erty for the considered data set: the spectral signatures of the 
pure components are still extremal points, i.e., vertices of the 
clusters, in the cases of FM and GBM mixtures contrary to the 
NM. In other words, geometrical endmember extraction algo-
rithms (EEAs) and, in particular, those that are looking for the 
simplex of largest volume (see [23] for details), may still be 
valid for the FM and the GBM under the assumption of weak 
nonlinear interactions. 

All these bilinear models only include between-component 
interactions m mi j9  with i j!  but no within-component inter-
actions .m mi i9  Finally, in [24], the authors derived a non-LMM 
using a RT model applied to a simple canyonlike urban scene. 
Successive approximations and simplifying assumptions lead to 
the following linear-quadratic mixing model (LQM) 

ay m m m n, , ,p r p
r

R

r i j p
j i

R

i

R

i j p
1 1

9b= + +
= ==

/ // (8)

with the positivity and additivity constraints in (2) and 
( , ) .0 1, ,i j p !b  This model is similar to the general formulation 

of the bilinear models in (4), with the noticeable difference that 
the nonlinear contribution includes quadratic terms .m mi i9

This contribution also shows that it is quite legitimate to 
include the termwise products mmi j9  as additional compo-
nents of the standard linear contribution, which is the core of 
the bilinear models described in this section. 

OTHER APPROXIMATING PHYSICS-BASED MODELS
To describe both macroscopic and microscopic mixtures, [25] 
introduces a dual model composed of two terms 

.a a fy m w nR, , ,p r p
r

R

r R p r p
r

R

r p
1

1
1

= + +
=

+

=

e o/ /

The first term is similar to the one encountered in LMM and 
comes from the macroscopic mixing process. The second one, 
considered as an additional endmember with abundance 

,a ,R p1+  describes the intimate mixture by the average single-
scattering albedo [2] expressed in the reflective domain by the 
mapping .·R^ h
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Altmann et al. have proposed in [26] an approximating model 
able to describe a wide class of nonlinearities. This model is 
obtained by performing a second-order expansion of the nonlin-
earity defining the mixture. More precisely, the thp  observed pixel 
spectrum is defined as a nonlinear transformation ·g p ^ h of a lin-
ear mixture of the endmember spectra 

,ay g m n,p p r p
r

R

r p
1

= +
=

e o/ (9)

where the nonlinear function g p  is defined as a second-order poly-
nomial nonlinearity parameterized by the unique nonlinearity 
parameter bp

: ( , )
, , .x b x x b x

0 1g
x

Rp
L L

p L p L
T

1 1
2 2

"

7 f+ +6 @ (10)

This model can be rewritten 

,by Ma Ma Ma np p p p p p9= + +^ ^h h

where , ,M m mR1 f= 6 @ and , , .a aa , ,p p R p
T

1 f= 6 @  The parame-
ter bp  tunes the amount of nonlinearity present in the thp  pixel 
of the image and this model reduces to the standard LMM when 

.b 0p =  It can be easily shown that this polynomial postnonlinear 
model (PPNM) includes bilinear terms m mi j9 ( )i j!  similar to 
those defining the FM, NM and GBM, as well as quadratic terms 
m mi i9  similar to the LQM in (8). This PPNM has been shown to 
be sufficiently flexible to describe most of the bilinear models 
introduced in this section [26]. 

LIMITATION OF A PIXEL-WISE NONLINEAR SU
Having reviewed the above physics-based models, an important 
remark must be made. It is important to note that these models 
do not take into account spatial interactions from materials pres-
ent in the neighborhood of the targeted pixel. It means that these 
bilinear models only consider scattering effects in a given pixel 
induced by components that are present in this specific pixel. This 
is a strong simplifying assumption that allows the model parame-
ters (abundance and nonlinear coefficients) to be estimated pixel-
by-pixel in the inversion step. Note, however, that the problem of 
taking adjacency effects into account, i.e., nonlinear interactions 
coming from spectral interference caused by atmospheric scatter-
ing, has been addressed in an unmixing context in [27]. 

NONLINEAR UNMIXING ALGORITHMS
Significant promising approaches have been proposed to nonlin-
early unmix hyperspectral data. A wide class of nonlinear unmix-
ing algorithms rely explicitly on a nonlinear physics-based 
parametric model, as detailed earlier. Others do not require defi-
nition of the mixing model and rely on very mild assumptions 
regarding the nonlinearities. For these two classes of approaches, 
unmixing algorithms have been considered under two different 
scenarios, namely supervised or unsupervised, depending on the 
available prior knowledge on the endmembers. When the end-
members are known, supervised algorithms reduce to estimating 
the abundance coefficients in a single supervised inversion step. 
In this case, the pure spectral signatures present in the scene 
must have been previously identified. For instance, they use prior 
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[FIG3] Clusters of observations generated according to (a) the LMM, (b) NM, (c) FM, and (d) GBM (blue) and the corresponding 
endmembers (red crosses).
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information or suboptimal linear EEA. Indeed, as previously 
noted, when considering weakly nonlinearly mixed data, the 
LMM-based EEA may produce good endmember estimates when 
there are pure pixels in the data set (see “On the Use of Geometri-
cal LMM-Based EEAs to Identify Nonlinearly Mixed Endmem-
bers”). In contrast, an unsupervised unmixing algorithm jointly 
estimates the endmembers and the abundances. Thus the unmix-
ing problem becomes even more challenging, since a blind 
source separation problem must be solved. 

MODEL-BASED PARAMETRIC NONLINEAR 
UNMIXING ALGORITHMS
Given a nonlinear parametric model, SU can be formulated as a 
constrained nonlinear regression or a nonlinear source separa-
tion problem, depending on whether the endmember spectral 
signatures are known or not. When dealing with intimate mix-
tures, some authors have proposed converting the measured 
reflectance into a single scattering albedo average; since this 
obeys a linear mixture, the mass fractions associated with each 
endmember can be estimated using a standard linear unmixing 
algorithm. This is the approach adopted in [15] and [18] for 
known and unknown endmembers, respectively. To avoid the 
functional inversion of the reflectance measurements into the 
single scattering albedo, a common approach is to use neural-
networks (NNs) to learn this nonlinear function. This is the 
strategy followed by Guilfoyle et al. in [28], for which several 
improvements have been proposed in [29] to reduce the compu-
tationally intensive learning step. In these NN-based 
approaches, the endmembers are assumed to be known a priori, 
and are required to train the NN. Other NN-based algorithms 
have been studied in [30]–[33]. 

For the bilinear models introduced previously, supervised 
nonlinear optimization methods have been developed based on 
the assumption that the endmember matrix M  is known. When 
the observed pixel spectrum y p  is related to the parameters of 
interest pi  (a vector containing the abundance coefficients as 
well as any other nonlinearity parameters) through the function 

( , ),M ${  unmixing the pixel y p  consists of solving the following 
minimization problem: 

( , ) .argmin y Mp p 2
2i i{-=

i

t (11)

This problem raises two major issues: 1) the nonlinearity of the 
criterion resulting from the underlying nonlinear model ( )${
and 2) the constraints that have to be satisfied by the parameter 

vector .i  Since the NM can be interpreted as an LMM with 
additional virtual endmembers, estimation of the parameters 
can be conducted with a linear optimization method as in [20]. 
In [9], [34] dedicated to FM and GBM, the authors propose to 
linearize the objective criterion via a first-order Taylor series 
expansion of ( ) .${  Then, the fully constrained least square 
(FCLS) algorithm of [35] can be used to estimate parameter 
vector .i  An alternative algorithmic scheme proposed in [34] 
consists of resorting to a gradient descent method, where the 
step-size parameter is adjusted by a constrained line search pro-
cedure enforcing the constraints inherent to the mixing model. 
Another strategy initially introduced in [22] for the GBM is 
based on Monte Carlo approximations, developed in a fully 
Bayesian statistical framework. The Bayesian setting has the 
great advantage of providing a convenient way to include the 
parameter constraints within the estimation problem, by defin-
ing appropriate priors for the parameters. This strategy has 
been also considered to unmix the PPNM [26]. 

When the spectral signatures M  involved in these bilinear 
models need also to be identified in addition to the abundances 
and nonlinearity parameters, more ambitious unmixing algo-
rithms need to be designed. In [36], the authors differentiate 
the NM to implement updating rules that generalize the spar-
sity promoting iterated constrained endmember (SPICE) algo-
rithm introduced in [37] for the LMM. Conversely, NMF-based 
iterative algorithms have been advocated in [38] for the GBM 
defined in (7), and in [24] for the LQM described in (8). More 
recently, an unsupervised version of the Bayesian PPNM-based 
unmixing algorithm initially introduced in [26] has been 
investigated in [39]. 

Adopting a geometrical point of view, Heylen and Scheun-
ders propose in [40] an integral formulation to compute geode-
sic distances on the nonlinear manifold induced by the GBM. 
The underlying idea is to derive an EEA that identifies the sim-
plex of maximum volume contained in the manifold defined by 
the GBM-mixed pixels. 

MODEL-FREE NONLINEAR UNMIXING ALGORITHMS
When the nonlinearity defining the mixing is unknown, the SU 
problem becomes even more challenging. In such cases, when 
the endmember matrix M  is fixed a priori, a classification 
approach can be adopted to estimate the abundance coefficients, 
which can be solved using support vector machines [41], [42]. 
Conversely, when the endmember signatures are not known, a 
geometrical-based unmixing technique can be used, based on 

ON THE USE OF GEOMETRICAL LMM-BASED EEAS TO IDENTIFY NONLINEARLY MIXED ENDMEMBERS

The first automated spectral unmixing algorithms, proposed 
in the 1990s, were based on geometrical concepts and were 
designed to identify endmembers as pure pixels (see [1] and 
[23] for comprehensive reviews of geometrical linear unmix-
ing methods). It is worth noting that this class of algorithms 
does not explicitly rely on the assumption of pixels coming 

from linear mixtures. They only search for endmembers as 
extremal points in the hyperspectral data set. Provided there 
are pure pixels in the analyzed image, this might indicate 
that some of these geometrical approaches can be still valid 
for nonlinear mixtures that preserve this property, such as 
the GBM and the FM as illustrated in Figure 3. 
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graph-based approximate geodesic distances [43] or manifold 
learning techniques [44], [45]. Another promising approach is to 
use nonparametric methods based on reproducing kernels [46]–
[51] or on Gaussian processes [4] to approximate the unknown 
nonlinearity. These two later techniques are described below. 

Nonlinear algorithms operating in reproducing kernel Hilbert 
spaces (RKHS) have received considerable interest in the 
machine-learning community, and have proved their efficiency in 
solving nonlinear problems. Kernel-based methods have been 
widely considered for detection and classification in hyperspectral 
images. Surprisingly, nonlinear unmixing approaches operating 
in RKHS have been investigated in a less in-depth way. The algo-
rithms derived in [46] and [47] were mainly obtained by replacing 
each inner product between endmember spectra in the cost func-
tions to be optimized by a kernel function. This can be viewed as 
a nonlinear distortion map applied to the spectral signature of 
each material, independently of their interactions. This principle 
can be extremely efficient in solving detection and classification 
problems as a proper distortion can increase the detectability or 
separability of some patterns. It is, however, of little physical 
interest in solving the unmixing problem because the nonlinear 
nature of the mixtures is not only governed by individual spectral 
distortions, but also by nonlinear interactions between the mate-
rials. In [48], a new kernel-based paradigm was proposed to take 
the nonlinear interactions of the endmembers into account, 
when these endmembers are assumed to be a priori known. It 
solves the optimization problem 

,min y m,p

L
2

1

2

H
H} n }- +

,

,
!}

i m i

=

,
i

^ h6 @/ (12)

where mm,  is the vector of the endmember signatures at the 
, th frequency band, particularly, , , ,m mm , ,R

T
1 f= , ,m, 6 @  with 

H  a given functional space, and n  a positive parameter that con-
trols the tradeoff between regularity of the function ( )$}i  and fit-
ting. Again, i  is a vector containing the abundance coefficients 
as well as any other nonlinearity parameters. It is interesting to 
note that (12) is the functional counterpart to (11), where ( )$}i

defines the nonlinear interactions between the endmembers 
assumed to be known in [48]. Clearly, this strategy may fail if the 
functional space H  is not chosen appropriately. A successful 
strategy is to define H  as an RKHS to exploit the so-called kernel 
trick. Let ( , )$ $l  be the reproducing kernel of .H  The RKHS H
must be carefully selected via its kernel to make it flexible enough 
to capture wide classes of nonlinear relationships, and to reliably 
interpret a variety of experimental measurements. To extract the 
mixing ratios of the endmembers, the authors in [48] focus their 
attention on partially linear models, resulting in the so-called 
K-HYPE SU algorithm. More precisely, the function ( )$}i  in (12) 
is defined by an LMM parameterized by the abundance vector ,a
combined with a nonparametric term, 

( ) ( )a mm mnlin} }= +<
i m mm, , , (13)

possibly subject to the constraints in (2), where nlin}  can be 
any real-valued function of an RKHS denoted by .Hnlin  This 

model generalizes the standard LMM, and mimics the PPNM 
when Hnlin  is defined to be the space of polynomial functions 
of degree two. Remember that the latter is induced by the 
polynomial kernel ( , ) ( )m m m m ql = <

m m m m, , , ,l l  of degree .q 2=
More complex interaction mechanisms can be considered by 
simply changing ( , ) .m ml m m, ,l  By virtue of the reproducing 
kernel machinery, the problem can still be solved in the 
framework of (12). 

Another strategy introduced in [4] considers a kernel-based 
approach for unsupervised nonlinear SU based on a nonlinear 
dimensionality reduction using a Gaussian process latent vari-
able model (GPLVM). In this work, the authors have used a par-
ticular form of kernel that extends the generalized bilinear 
model in (7). The algorithm proposed in [4] is unsupervised in 
the sense that the endmembers contained in the image and the 
mixing model are not known. Only the number of endmembers 
is assumed to be known. As a consequence, the parameters to be 
estimated are the kernel parameters, the endmember spectra 
and the abundances for all image pixels. The main advantage of 
GPLVMs is their capacity to accurately model many different 
nonlinearities. GPLVMs construct a smooth mapping from the 
space of fractional abundances to the space of observed mixed 
pixels that preserves dissimilarities. This strategy has been also 
considered in [51] by Nguyen et al., who solve the so-called prei-
mage problem [52] studied in the machine-learning commu-
nity. In the SU context, it means that pixels that are spectrally 
different have different latent variables and thus different abun-
dance vectors. However, preserving local distances is also inter-
esting: spectrally close pixels are expected to have similar 
abundance vectors and thus similar latent variables. Several 
approaches have been proposed to preserve similarities, includ-
ing back-constraints and locally linear embedding. 

For illustration, a small set of experiments has been con-
ducted to evaluate some of the model-based and model-free 
algorithms introduced above. First, four synthetic images of 
size 50 × 50 have been generated by mixing R 3=  endmember 
spectra (i.e., green grass, olive green paint, and galvanized steel 
metal) extracted from the spectral libraries provided with the 
ENVI software [53]. These four images have been generated 
according to the standard LMM (1), GBM (7), FM (6), and PPNM 
(9), respectively. For each image, the abundance coefficient vec-
tors , ,a aa , ,p p p1 3f_ 6 @ , , , )(p 1 2 500f=  have been randomly 
and uniformly generated in the admissible set defined by the 
constraints (2). We have also considered the more challenging 
scenario defined by the assumption that there is no pure pixel 
(by imposing . , , ) .a r p0 9,r p 6 61  The nonlinearity coefficients 
are uniformly drawn in the set [ , ]0 1  for the GBM. The PPNM-
parameters ,bp ,p P1f=  have been generated uniformly in 
the set [ . , . ] .0 3 0 3-  For both scenario (i.e., with or without 
pure pixels), all images have been corrupted by an additive inde-
pendent and identically distributed (i.i.d) Gaussian noise of vari-
ance ,102 4v = -  which corresponds to an average 
signal-to-noise ratio (SNR) of 20 dB (note that the usual SNR 
for most of the spectro-imagers are not below 30 dB). Various 
unmixing strategies have been implemented to recover 
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the endmember signatures and then estimate the abundance 
coefficients. For supervised unmixing, the N-FINDR algorithm 
[54] and its nonlinear geodesic-based counterpart [43] have 
been used to extract the endmembers from linear and nonlinear 
mixtures, respectively. Then, dedicated model-based strategies 
were used to recover the abundance fractions. The fully con-
strained least square (FCLS) algorithm [35] was used for linear 
mixtures. Gradient-based algorithms (GBAs) were used for non-
linear mixtures. The GBAs are detailed in [55], [34], and [9] for 
the PPNM, GBM, and FM, respectively. For comparison with 
supervised unmixing, and to evaluate the impact of having no 
pure pixels in these images, joint estimations of endmembers 
and abundances was implemented using the Markov chain 
Monte Carlo techniques detailed in [56] and [39] for the LMM 
and PPNM images, respectively. Finally, the model-free super-
vised K-HYPE algorithm detailed in [48] was also coupled with 
the nonlinear EEA in [43]. The performance of these unmixing 
strategies has been evaluated in term of abundance estimation 
error measured by 

,
RP
1RNMSE a ap p

n

N
2

1
= -

=

t/

where a p  is the nth actual abundance vector and a pt  its corre-
sponding estimate. The results are reported in Table 1. These 
results clearly show that the prior knowledge of the actual 
mixing model underlying the observations is a clear advantage 
for abundance estimation. However, in the absence of such 
knowledge, using an inappropriate model-based algorithm 
may lead to poor unmixing results. In such cases, as advocated 
before, PPNM seems to be sufficiently flexible to provide rea-
sonable estimates, whatever the mixing model may be. Other-
wise, one may prefer to resort to model-free-based strategy 
such as K-HYPE. 

DETECTING NONLINEAR MIXTURES
The consideration of nonlinear effects in hyperspectral images 
can provide more accurate results in terms of endmember and 
abundance identification. However, working with nonlinear mod-
els generally requires a higher computational complexity than 
approaches based on the LMM. Thus, unmixing linearly mixed 
pixels using nonlinear models should be avoided. Consequently, it 

is of interest to devise techniques to detect nonlinearities in the 
mixing process before applying any unmixing method. Linearly 
mixed pixels can then be unmixed using linear unmixing tech-
niques, leaving the application of more involved nonlinear 
unmixing methods to situations where they are really necessary. 
This section describes approaches that have been recently pro-
posed to detect nonlinear mixing in hyperspectral images. 

DETECTION USING A PPNM  
One interesting approach for nonlinearity detection is to assume 
a parametric non-LMM that can model different nonlinearities 
between the endmembers and the observations. A model that has 
been successfully applied to this end is the PPNM (9) studied in 
[26] and [55]. PPNM assumes the postnonlinear mixing described 
in (9) with the polynomial nonlinearity g p  defined in (10). Hence, 
the nonlinearity is characterized by the parameter bp  for each 
pixel in the scene. This parameter can be estimated in conjunc-
tion with the abundance vector a p  and the noise variance .2v

Denote as ( , , )s ba p p
2 2v  the variance of the maximum likelihood 

estimator bp
t  of .b  Using the properties of the maximum likeli-

hood estimator, it makes sense to approximate the distribution of 
bp
t  by the following Gaussian distribution: 

~ , ( , , ) .b b s a bNp p p p
2 2vt ^ h

The nonlinearity detection problem can be formulated as the 
binary hypothesis testing problem 

: ( )
: ( ) .

1
9

is distributed according to the LMM
is distributed according to the PPNM

y
y

H
H

p

p1

0
) (14)

Hypothesis H0  is characterized by ,b 0p =  whereas nonlinear 
models ( )H1  correspond to .b 0p !  Then, (14) can be rewritten as 

:
:

~ ( , )
~ ( , ),

b s
b b s

0N
N

H
H

p

p p1

0
2

1
2

0
t

t) (15)

where ( , , )s s 0a p0
2 2 2v=  and ( , , )s s ba p p1

2 2 2v=  with .b 0p !

Detection can be performed using the generalized likelihood ratio 
test. This test accepts H1  (respectively )H0  if the ratio 

 /T b sp
2

0
2_ t  is greater (respectively lower) than a threshold .h  As 

shown in [55], the statistic T  is approximately normally distrib-
uted under the two hypotheses. Consequently, the threshold h

[TABLE 1] ABUNDANCE RNMSES ( )10 2# - FOR VARIOUS LINEAR/NONLINEAR UNMIXING SCENARIOS.

MIXING MODELS: WITH PURE PIXELS MIXING MODELS: WITHOUT PURE PIXELS

LMM PPNM GBM FM LMM PPNM GBM FM 

M
O

D
EL

-B
A

SE
D

A
LG

O
RI

TH
M

LMM N-FINDR + FCLS 1.42 14.1 7.71 13.4 3.78 13.2 6.83 9.53

UNSUPERVISED MCMC 0.64 12.4 5.71 8.14 0.66 10.9 4.21 3.92

PPNM GEODESIC + GBA 1.52 10.3 6.04 12.1 4.18 6.04 4.13 3.74

UNSUPERVISED MCMC 0.39 0.73 1.32 2.14 0.37 0.81 1.38 2.25

GBM GEODESIC + GBA 2.78 14.3 6.01 13.0 4.18 11.1 5.02 1.45

FM GEODESIC + GBA 13.4 21.8 9.90 3.40 12.2 18.1 7.17 4.97

GEODESIC + K-HYPE 2.43 9.71 5.23 11.3 2.44 5.92 3.18 2.58
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can be explicitly related to the probability of false alarm (PFA) and 
the probability of detection (PD), i.e., the power of the test. How-
ever, this detection strategy assumes the prior knowledge of the 
variances s0

2  and .s1
2  In practical applications, Altmann et al. have 

proposed to modify the previous test strategy as follows [55]: 

,T
s
b *p

0
2

2 H

H

1

0
U h=t

t

t
(16)

where s0
2t  can be calculated as 

( ; , ) .s 0CCRLB a p0
2 2v=t t t (17)

In (17), CCRLB is the constrained Cramér–Rao lower-bound [57] 
on estimates of the parameter vector [ , , ]ba p

T
p

T2i v=  under ,H0   
and ,a p

2vt t^ h is the MLE of , .a p
2v^ h  The performance of the 

resulting test is illustrated in Figure 4, which shows the pixels 
detected as linear (red crosses) and nonlinear (blue dots) when 
generated according to various mixing models (LMM, FM, GBM, 
and PPNM). 

ROBUST MODEL-FREE DETECTION
The detector discussed in the previous section assumes a spe-
cific non-LMM under the alternative hypothesis. However, there 
are situations where the actual mixing does not obey any avail-
able model. It is also possible that there is insufficient informa-
tion to opt for any existing nonlinearity model. In these cases, it 
is interesting to address the problem of determining whether an 

observed pixel is a linear function of endmembers or results 
from a generic nonlinear mixing. 

One may consider the LMM (1) and the hyperplane P
defined by 

: | , .z z a 1MaP ,p p p r p
r

R

1
= =

=

) 3/ (18)

In the noise-free case, the hyperplane P  lies in an ( )R 1- -dimen-
sional subspace embedding all observations distributed according 
to the LMM. On the other hand, consider the general non-LMM 

,y Ma np p p pn= + + (19)

where pn  is an L 1#  deterministic vector that does not belong 
to ,P  i.e., Pp "n  and a p  satisfies the constraints (2). Note 
that a similar non-LMM coupled with a group-sparse constraint 
on pn  has been explicitly adopted in [58] and [59] to make 
more robust the unmixing of hyperspectral pixels. In (19), pn

can be a nonlinear function of the endmember matrix M  and/or 
the abundance vector a p  and should be denoted as ( , )M ap pn

[60]. However, the arguments M  and a p  are omitted here for 
brevity. Given an observation vector ,y p  the detection of nonlin-
ear mixtures can be formulated as the following binary hypothe-
sis testing problem: 

:
:

( )
( ) .
1
19

is distributed according to the LMM
is distributed according to the model

y
y

H
H

p

p1

0
'

[FIG4] Pixels detected as linear (red crosses) and nonlinear (blue dotted) for the four subimages generated according the (a) LMM, (b)
FM, (c) GBM, and (d) PPNM. Black lines depict the simplex corresponding to the noise-free case LMM.
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Using the statistical properties of the noise ,n p  we obtain 
[ | ] ,E y MaH Pp p0 !=  whereas [ | .]E y MaH Pp p p1 "n= +

As a consequence, it makes sense to consider the squared 
Euclidean distance 

( ) min zy y
z

p p p
2 2

Pp
d = -

!
(20)

between the observed pixel y p  and the hyperplane P  to decide 
which hypothesis (H0  or )H1  is true. 

As shown in [60], the test statistic ( )y p
2d  is distributed 

according to 2|  distribution under the two hypotheses H0

and .H1  The parameters of this distribution depend on the 
known matrix ,M  the noise variance 2v  and the nonlinearity 
vector .pn  If 2v  is known, the distribution of ( )y p

2d  is per-
fectly known under H0  and partially known under .H1  In this 
case, one may employ a statistical test that does not depend on 

.pn  This test accepts H1  (respectively )H0  if the ratio 
( ) /T y p

2 2_ d v  is greater (respectively lower) than a threshold 
.h  As in the PPNM-based detection procedure, the threshold 
h  can be related to the PFA and PD through closed-form 
expressions. In particular, it is interesting to note that the PD 
is intrinsically related to a non-Euclidean norm of the residual 
component pn  (see [60, Eq. (11)]), which is unfortunately 
unknown in most practical applications. If the noise variance 

2v  is unknown, which is the case in most practical applica-
tions, one can replace 2v  with an estimate ,2vt  leading to 

( )
,T

y* p
2

2 H

H

1

0
_ U

v

d
h

t
(21)

where h  is the threshold computed as previously indicated. 
The PFA and PD of the test (21) are then explicitly obtained 
using cumulative distribution functions of the 2|  distribu-
tion. It was shown in [60] that the better the estimation of ,2v

the closer the distributions of T  and T*  and thus the closer 
the performances of the two corresponding tests. Several tech-
niques can be used to estimate .2v  For instance, 2vt  has been 
estimated in [60] through an eigenanalysis of the sample cova-
riance matrix of a set of pixels assumed to share the same vari-
ance. The value of 2vt  was determined as the average of the 
smallest eigenvalues of the sample covariance matrix. The 
accuracy of the estimator is a function of the number of eigen-
values considered. It was shown in [60] that a PFA smaller 
(respectively larger) than P*

FA  is obtained if 2 22v vt  (respec-
tively ) .2 21v vt

CONCLUSIONS AND OPEN CHALLENGES
To overcome the intrinsic limitations of the LMM, several 
recent contributions have been made for modeling of the phys-
ical processes that underlie hyperspectral observations. Some 
models attempt to account for between-material interactions 
affecting photons before they reach the spectro-imager. Based 
on these models, several parametric algorithms have been pro-
posed to solve the resulting nonlinear unmixing problem. 
Another class of unmixing algorithms attempts to avoid the 
use of any rigid nonlinear model by using nonparametric 

machine-learning-inspired techniques. The price to pay for 
handling nonlinear interactions induced by multiple scattering 
effects or intimate mixtures is the computational complexity 
and a possible degradation of unmixing performance when pro-
cessing large hyperspectral images. To overcome these difficul-
ties, one possible strategy consists of detecting pixels subjected 
to nonlinear mixtures in a preprocessing step. The pixels 
detected as linearly mixed can then benefit from the huge and 
reliable literature dedicated to the linear unmixing problem. 
The remaining pixels (detected as nonlinear) can then be the 
subject of particular attention. 

This article has described development methods in nonlin-
ear mixing for hyperspectral imaging. Several important chal-
lenges remain. First of all, better integration of algorithmic 
approaches and physical models have the potential to greatly 
improve nonlinear unmixing performance. By fully accounting 
for complex RT effects, such as scattering, dispersion, and beam 
interaction depth, a physical model can guide the choice of sim-
plified mathematical and statistical models. Preliminary results 
have been recently communicated in [61], based on in situ mea-
surements coupled with simulation tools (e.g., ray-tracing tech-
niques). A second challenge is to develop unmixing models that 
take heterogeneity of the medium into account. Heterogeneous 
regions consist of combinations of linear, weakly nonlinear, and 
strongly nonlinear pixels. The detection strategies detailed 
above might be one solution to tackle this problem since they 
are able to locate the areas where a nonlinear model may out-
perform a linear model and vice versa. Another approach 
adopted in [58] and [59], which works well when there are only 
a few nonlinear subregions, consists of using a statistical outlier 
approach to identify the nonlinear pixels. Moreover, as any non-
linear blind source separation problem, deriving flexible unsu-
pervised unmixing algorithms is still a major challenge, 
especially if one wants to go one step further than a crude pixel-
by-pixel analysis by exploiting spatial information inherent to 
these images. Finally, we observe that the presence of nonlin-
earity in the observed spectra is closely related to the number R
of endmembers, which is usually unknown. For example, in 
analogy to kernelization in machine learning, after nonlinear 
transformation, a nonlinear mixture of R  components can 
often be represented as a linear mixture of Ru  endmembers, with 

.R R2u  Recent advances in manifold learning and dimensional-
ity estimation are promising approaches to the nonlinear 
unmixing problem. 
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ariable illumination and environmental, atmo-
spheric, and temporal conditions cause the mea-

sured spectral signature for a material to vary 
within hyperspectral imagery. By ignoring these 

variations, errors are introduced and propagated 
throughout hyperspectral image analysis. To develop accurate 
spectral unmixing and endmember estimation methods, a num-
ber of approaches that account for spectral variability have been 
developed. This article motivates and provides a review for 
methods that account for spectral variability during 

hyperspectral unmixing and endmember estimation and a dis-
cussion on topics for future work in this area.

INTRODUCTION
A wide range of applications including planetary exploration, 
environmental monitoring, and target detection have been tack-
led using hyperspectral image analysis. In all of these applica-
tions, a prominent area of study is in the development of 
spectral unmixing and endmember estimation techniques [1]. 
Endmembers are the spectral signatures, the radiance or reflec-
tance values over hundreds of contiguous spectral bands, of the 
pure, constituent materials in a hyperspectral scene. Given a 
hyperspectral image, endmember estimation is the task of 
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extracting the spectral signatures for all of the materials located 
in the scene. Spectral unmixing estimates the proportions of 
each endmember at every spatial location. In the overwhelming 
majority of hyperspectral unmixing and endmember estimation 
algorithms, pixels in a hyperspectral image are modeled as con-
vex combinations of endmembers 

, ,ep n N1xn mn
m

M

m n
1

fe= + =
=

/ (1)

such that p 0mn $  and ,p 1
m

M
mn1
=

=
/  and where xn  is a 

D 1#  vector containing the spectral signature of the nth pixel 
in a hyperspectral image, N  is the number of pixels in the 
image, M  is the number of endmembers (or materials) found 
in the scene, pmn  is the proportion of endmember m  in pixel n
, em  is the D 1#  vector containing the spectral signature of 
the mth endmember, ne  is an error term, and D  is the number 
of spectral bands (i.e., the dimen-
sionality) of the hyperspectral data 
[1]. Although used extensively in 
the literature, the linear mixing 
model in (1) lacks the ability to 
represent the spectral variability of 
the endmembers in a scene. 
Instead, endmember spectral signa-
tures are represented as single 
points in a high-dimensional space. 

The spectral signature for a 
material varies within hyperspec-
tral data collections due to a num-
ber of reasons including environmental, atmospheric, and 
temporal factors. A material may also have intrinsic spectral 
variability. One major source of spectral variability results 
from variation due to illumination conditions [2], [3]. 
Changes in illumination can result from variation in topog-
raphy and surface roughness leading to varying levels of 
shadowed and brightly lit regions. Illumination is also 
dependent on solar elevation, solar azimuth, and local inci-
dence angle on the material of interest [2]. Differences in the 
architecture of plant canopies, changes in the distribution of 
leaf orientation in vegetated regions, or varying building 
structure and layout in urban areas cause differing illumina-
tion levels and areas of shade [4]. When considering miner-
als, changes in grain size and texture affect illumination. In 
this case, smaller grain sizes allow for stronger and more 
uniform backscattered energy resulting in shallower absorp-
tion features and higher reflectance values [5]. If accurate 
digital terrain-elevation models and photometric informa-
tion are known for an area, then some of the effects of illu-
mination may be able to be removed. In general, however, 
this information is unavailable for a scene and, if it were 
known, would require significant computationally intensive 
preprocessing. 

Another significant source of spectral variation results 
from changing atmospheric conditions. In particular, the 

levels of atmospheric gases and aerosols such as water 
vapor, oxygen, ozone, carbon monoxide, and carbon dioxide 
can absorb and scatter radiation and, as an example, cause a 
significant impact on the measured spectral signature of a 
material [6]. Many atmospheric gases have strong absorp-
tion features or scattering characteristics in a number of 
wavelengths throughout the electromagnetic spectrum. 
These absorption and scattering features modify measured 
spectral signatures as they affect the downward and upward 
transmittance of radiation from the sun to the surface 
being measured and, then, from the ground surface to the 
hyperspectral sensor. In a common spectral radiance model, 
the downward transmittance of radiation to surface is a 
combination of the direct solar radiation from the sun to 
the ground surface; the skylight also known as the diffuse 
transmittance, which is the solar radiation scattered by 
atmospheric gases and aerosols and redirected toward the 

ground surface being measured; 
and  l ight  due  to  mult ip le , 
repeated reflections and scatter-
ing from neighboring surfaces 
and the atmosphere. Then, the 
total upward transmittance is a 
combination of the light reflected 
by the ground surface; light 
reflected by the ground surface, 
and rescattered by atmospheric 
gases and aerosols, and sunlight 
scattered by the atmosphere and 
redirected toward the sensor 

without reaching a ground surface [7]. A number of 
approaches have been developed that attempt to remove the 
atmospheric effects from hyperspectral data; however, some 
of the spectral variability due to atmospheric conditions may 
not be eliminated using these approaches. For example, as 
discussed by Gao et al. [8], many of these approaches may 
not accurately account for nitrogen dioxide levels in the 
atmosphere, which can be extremely high in urban areas, or 
measured radiance from a pixel may be modified by the radi-
ance of neighboring pixels due to scattering of solar radi-
ation by atmospheric molecules. 

Although spectral variability due to these sources is 
expected, unmixing and endmember estimation methods gen-
erally do not account for spectral variability. As such, errors 
resulting from inaccurate endmember representation will be 
propagated throughout analysis. The most prominent effects 
from inaccurate endmember representations are resulting 
errors in estimated proportion values, termed proportion inde-
terminacy, or the use of too many endmembers to represent a 
spectrum [4]. To avoid these errors and to represent spectral 
variability during analysis, a number of spectral unmixing and 
endmember estimation algorithms that incorporate spectral 
variability have been developed in the literature [9]. As shown 
by results presented by Garcia-Haro et al. [4], accounting for 
endmember variability can result in a significant improvement 

METHODS THAT ACCOUNT 
FOR ENDMEMBER SPECTRAL 

VARIABILITY CAN BE ORGANIZED 
INTO TWO GENERAL CATEGORIES 

BASED ON THE VARIABLE 
ENDMEMBER REPRESENTATION 
USED: ENDMEMBERS AS SETS 

AND ENDMEMBERS AS 
STATISTICAL DISTRIBUTIONS.
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in proportion estimation and signal fitting. Previous work by 
Somers et al. [9] has reviewed a number of methods in using 
the endmembers as sets approach to account for spectral vari-
ability. This article extends the review for the latest develop-
ments of this approach and includes the other approach of 
endmembers as statistical distributions that was not discussed 
in [9]. The objective here is to provide a comprehensive over-
view of the two approaches with an algorithmic and signal 
processing viewpoint. 

Methods that account for endmember spectral variability can 
be organized into two general categories based on the variable 
endmember representation used: endmembers as sets (which 
can also be seen as a linear mixing model approach) and end-
members as statistical distributions (which can be seen as a sto-
chastic mixing model approach). The former has a longer 
history and the latter is more recent. Both of these representa-
tions come with associated advantages and challenges; some of 
these are listed in Table 1. In the following, a review of these 
methods is provided. 

ENDMEMBERS AS SETS
One approach to account for spectral variability is to 
represent each endmember of a material with a set or “bun-
dle” of spectra. Generally speaking, with this representa-
tion, a pixel will be modeled as a convex combination of one 
or more representatives selected from different sets of spec-
tral signatures. 

KNOWN SPECTRAL LIBRARY

MULTIPLE ENDMEMBER ENDMEMBER
MIXTURE ANALYSIS AND VARIANTS
Several methods for spectral unmixing estimate proportion val-
ues by exhaustively searching a given spectral library for end-
members whose corresponding estimated proportion values 
satisfy some criteria. The most prominent of these approaches 
is the multiple endmember spectral mixture analysis 
(MESMA) algorithm [10]. MESMA estimates proportions for 
an input pixel by searching the endmembers for which propor-
tion values are found that satisfy three conditions: 1) the root 
mean square (rms) error between the input pixel and its 
reconstruction using endmembers and proportions is below a 
prescribed threshold, , ,trms x en m m

M
1 1=` j" ,  where 

, min D p1rms x e x e
pn m m

M
n mn

m

M

m1
1 2

2

mn
= -=

=

` fj p" , / (2)

and em m
M

1=" ,  is the collection of M  endmembers used to unmix 
the pixel, 2) the rms error for contiguous spectral bands is below 
a prescribed threshold, and 3) the estimated proportion values are 
within some prescribed range. This range may be fixed to 
[ ]p0 1mn# #  or, to account for some error in endmember or 
proportion values allow for values slightly outside of this range 
(e.g.,[ . . ]) .p0 01 1 01mn# #-  This approach allows each input 
pixel from a hyperspectral scene to be represented using a unique 

[TABLE1] AN OVERVIEW OF SOME BENEFITS AND CHALLENGES TO ENDMEMBER VARIABILITY REPRESENTATIONS.

ENDMEMBERS AS SETS ENDMEMBERS AS STATISTICAL DISTRIBUTIONS 

ADVANTAGES MAKES USE OF A NONPARAMETRIC REPRESENTATION
THAT DOES NOT REQUIRE THE ASSUMPTION OF ANY
PARTICULAR DISTRIBUTION ON SPECTRAL VALUES. THE
APPROACH CAN BE EASILY CONSTRAINED TO ONLY  
PHYSICALLY POSSIBLE SPECTRAL SIGNATURES.

MAKES USE OF AN EFFICIENT, COMPACT, AND CONTINUOUS 
REPRESENTATION THAT CAN ACCOUNT FOR A RANGE OF 
SPECTRAL VALUES THAT MAY NOT HAVE BEEN PREVIOUSLY 
MEASURED FOR INCLUSION IN A DISCRETE SPECTRAL LIBRARY. 

CHALLENGES ACCURACY IS LIMITED BY THE ENDMEMBER
REPRESENTATIVES THAT HAVE BEEN MEASURED
OR EXTRACTED FROM INPUT DATA FOR INCLUSION
DURING SPECTRAL UNMIXING.

ACCURACY OF RESULTS IS DEPENDENT ON THE SELECTION  
OF AN ACCURATE PARAMETRIC FORM AND PARAMETER VALUES.
DEPENDING ON THESE SELECTIONS, THIS APPROACH MAY
RESULT IN REPRESENTATIONS THAT ALLOW FOR ENDMEMBER
VARIATIONS THAT ARE NOT PHYSICALLY MEANINGFUL.

TYPICAL METHODS MESMA, MELSUM, BSMA, AND AUTOMCU:
PROS: DIRECT AND STRAIGHTFORWARD TO APPLY.  
CONS: COMPUTATIONALLY INEFFICIENT. 

BAYESIAN SOURCE SEPARATION:
PROS: JOINT ESTIMATION OF ENDMEMBERS AND PROPORTIONS; 
ENDMEMBERS NOT LIMITED BY SPECTRAL LIBRARY;  
CONS: FULL SPECIFICATIONS OF ENDMEMBER DISTRIBUTIONS 
NEEDED; PHYSICALLY UNREALISTIC ENDMEMBERS MAY BE 
ALLOWED.

ENDMEMBER BUNDLES:
PROS: DESIGNED TO QUANTIFY PROPORTION  
INDETERMINANCY. 
CONS: ACCURACY DEPENDENT ON CHOSEN ENDMEMBER
“SEEDS.”

NORMAL COMPOSITIONAL MODEL:
PROS: EFFICIENT USE OF GAUSSIAN DISTRIBUTION.
CONS: PHYSICALLY UNREALISTIC ENDMEMBERS INCLUDED; 
COVARIANCE BETWEEN BANDS NOT ADDRESSED.

BAND WEIGHTING AND TRANSFORMATION:
PROS: COMPUTATIONALLY EFFICIENT; MAXIMIZED
BETWEEN ENDMEMBER VARIANCE TO REDUCE UNMIXING
CONFUSION. CONS: NOISE CORRELATION AFFECTED AFTER
TRANSFORMATION.

BETA COMPOSITIONAL MODEL:
PROS: REFLECTANCE VALUES CONSTRAINED TO PHYSICALLY 
MEANINGFUL RANGE; ABLE TO REPRESENT SKEW IN
ENDMEMBER DISTRIBUTIONS. CONS: DETAILED SPECIFICATIONS
OF ENDMEMBER  DISTRIBUTIONS REQUIRED. 

SPARSE AND LOCAL UNMIXING:
PROS: EXPLICIT SPECTRAL LIBRARY NOT REQUIRED A PRIORI; 
DATA-POINT OR REGION SPECIFIC ENDMEMBER SETS ALLOWED.
CONS: ENFORCING SPARSITY AND SPATIAL ASSUMPTIONS
THAT MAY BE INVALID (E.G., EDGES). 

METHODS OF HIGHER MOMENTS:
PROS: SIMPLE FORM TO ADDRESS ANY ENDMEMBER
DISTRIBUTION.
CONS: ACCURACY LIMITED BY NUMBER OF MOMENTS USED; 
ENDMEMBER MOMENTS NEEDED IN ADVANCE.
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collection of endmember spectra from the spectral library. There-
fore, even if each input pixel is restricted to be represented by, 
e.g., no more than three endmembers, the full scene can be 
mapped using many more. 

When the spectral library is large, there will be a considerable 
number of elements to choose from. In such a case, MESMA may 
result in difficulties such as finding an overabundance of viable 
solutions or extreme computational inefficiency by exhaustively 
searching over all possible combinations of endmembers. A num-
ber of extensions to MESMA attempt to mitigate these difficulties 
such as defining methods for pruning endmembers before apply-
ing MESMA. 

There are a number of variants based on MESMA. The mul-
tiple-endmember linear spectral unmixing (MELSUM) method 
relaxes the criteria to identify viable proportions where non-
negative values are sufficient [5]. The Bayesian spectral mix-
ture analysis (BSMA) method obtains the final proportion 
value of a material in a pixel through a weighted sum of the 
proportion values found in all com-
binations, where the weights are 
proportional to the probabilities of 
each endmember deduced from the 
spectral library [11]. The auto-
mated Monte Carlo unmixing 
(AutoMCU) method randomly 
selects endmembers from the spec-
tral library to unmix the hyper-
spectral scene over several times [12], rather than doing an 
exhaustive search. The proportion values of each pixel are 
summarized using their mean and standard deviation associ-
ated with each material from the several runs. In addition to 
improving computational efficiency, AutoMCU is able to quan-
tify explicitly the proportion indeterminacy. 

MESMA, MELSUM, BSMA, and AutoMCU do not inherently 
address spectral variability without an appropriate spectral 
library. The spectral library must have more than one spectra 
to represent each material, and they are grouped together to 
form the set , , , , ,E m M1 2m f=  where M  is the number of 
materials. Then, during unmixing, one or none of the spectra 
from each set are selected to estimate proportion values, i.e.,

.Eem m!  As such, when an appropriate spectral library is pro-
vided, each pixel can be unmixed using a unique spectral variation 
of each material. 

During unmixing, these approaches often also account for 
variability due to illumination by including a “shade” end-
member [3]. The shade effect often corresponds to multiplica-
tion factor in the hyperspectral image. In the linear mixing 
model, however, the shade effect can be accounted for through 
normalization of the image data or the addition of a photomet-
ric shade endmember (i.e., the origin) because they are math-
ematically equivalent. 

ENDMEMBER BUNDLES
The endmember bundles unmixing approach was designed to 
explicitly address spectral variablity and quantify the associated 

proportion indeterminacy [13]. It estimates the minimum and 
maximum proportion values for the thm  material of pixel xn  by 
minimizing (3) and (4), respectively, 

minp p ws, , , , ,min mn p p s m i
i

T

in
1

n Tn1
|= +

f
=

/ (3)

maxp p ws1 1, , , , ,max mn p p s m i
i

T

in
1

n Tn1
|= - - +

f
=

,^ h= G/ (4)
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The minimization is over the nonnegative proportion values 
pin  that must satisfy p sx e d

i

T
n in i1
= +

=
/  and .p 1

i

T
in1
=

=
/

T  is the total number of elements across all endmember sets, 
ei  denotes the ith spectral signature across the whole library, 
Em  is the endmember set composed of all endmember spectra 
of the mth material, and ( / )T1d x e

i

T
n i1

= -
=
/ . The variables 

[ , )s 0 3!  and [ , )w 0 3!  are 
used to minimize the residual 
error. The parameter w  is set to a 
very large value (tending toward 

)3  to drive the estimated s  value 
toward zero. The optimization is 
conducted using Dikin’s affine 
algorithm method [13]. Given 
these min and max proportion val-

ues, the mean proportion value can also be computed, 
( ) / .p p p 2, , ,min maxmn mn mnmean = +

BAND SELECTION, WEIGHTING, AND TRANSFORMATION
Another approach to address spectral variability is through 
band selection or weighting [9] such that the wavelengths 
with minimum spectral variability are the ones that are pri-
marily used for spectral unmixing. Extending this concept, 
one could find spectral transformations that transform the 
input hyperspectral data into a space that minimizes the effect 
of spectral variability. In particular, the Fisher discriminant 
approach (FDA) for spectral unmixing learns a transformation 
for the spectral signature elements to minimize the scatter 
within endmember sets and maximize the scatter among them 
prior to the estimation of proportion values [14] to avoid 
unmixing confusion [15]. The goal of FDA is to estimate the 
transformation projection matrix, Wt

,arg maxW
W S W
W S W

T
w

T
b

W
=t (6)

where Sb  and Sw  are between- and within-class dispersion matri-
ces [16]. Each pixel is transformed by Wt  before estimating pro-
portion values, and (1) becomes 

, , .ep n N1Wx W Wn mn
m

M

m n
1

fe= + =
=

t t t/ (7)

An effective transformation matrix will make the trans-
formed elements within the same set nearly identical to each 

THE ENDMEMBER BUNDLES 
UNMIXING APPROACH WAS 

DESIGNED TO EXPLICITLY 
ADDRESS SPECTRAL VARIABLITY 
AND QUANTIFY THE ASSOCIATED 
PROPORTION INDETERMINACY.
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other and, thus, any one of the transformed elements from 
each of the endmember sets can be used to estimate the cor-
responding proportion values for that material. This linear 
transformation will affect the noise distribution and, to 
address this, the noise correlation can be accounted for 
through the use of a weighting matrix when estimating the 
proportion values. 

SUPPORT VECTOR MACHINE UNMIXING
A number of approaches using support vector machines 
(SVMs) have been developed for spectral unmixing while 
addressing spectral variability [17], [18]. An SVM is a com-
monly used supervised two-class classifier. Given a training 
set, ( , ), , ( , )y yx xN N1 2 f" ,  where xi  is the thi  data point and 

,y 0 1i ! " ,  is the desired class label, an SVM learns a hyper-
plane that separates the two classes [16]. In the context of 
hyperspectral unmixing, the two SVM classes are the 
favorable class containing pixels from mixing endmembers 
at specific proportion values versus the unfavorable class of 
those coming from other proportion choices. To elaborate 
further [17], the first step for 
SVM unmixing is to discretize 
the solution space of unmixed 
proportions to a finite number of 
candidates. For example, if two 
materials are under considera-
tion, with a proportion resolu-
tion of 0.1 for each material, nine 
proportion solution candidates 
(. , . ), (. , . ), , (. , . )9 1 8 2 1 9f6 @ are generated. For each candidate, 

synthesized pixel data are created by drawing elements from 
the endmember sets and mixing them according to the pro-
portion candidate. Next, a number of SVMs are trained, one 
for each solution candidate, by labeling the synthesized data 
of the selected candidate as one and the rest as zero. Given 
an unknown pixel for unmixing, it is evaluated through all of 
the SVM classifiers and the SVM that gives the largest classi-
fication margin will identify the corresponding candidate as 
the unmixed proportion solution. 

One advantage of SVM unmixing is that spectral variability is 
automatically taken care of when creating synthesized data for 
SVM training. Due to the discretization of proportion values, how-
ever, this approach produces a finite and possibly limited number 
of abundance proportion choices only, which might be not accept-
able in some applications. 

UNKNOWN SPECTRAL LIBRARY
Spectral libraries can be obtained using laboratory meas-
urements of materials of interest or manual endmember 
identification from the imagery under study or data previ-
ously acquired. Often, spectral libraries or the expertise 
needed to identify spectral signatures of various materials is 
unavailable. Thus, approaches to autonomously estimate 
endmember sets and perform spectral unmixing of input 
data are needed. 

AUTOMATED ENDMEMBER BUNDLES
An earlier work [13] proposes a semiautomatic endmember set 
estimation technique. It begins with manually selected “end-
member seeds” and grows an endmember set by identifying the 
data pixels that have high correlation coefficients with the 
seeds, provided that spectral reflectance values are constrained 
to the physically meaningful range of zero to one. 

In the subsequent work [19], Somers et al. developed a fully 
automated approach for building endmember sets by repeatedly 
applying a standard endmember extraction method, such as ver-
tex component analysis (VCA) [20], to a randomly selected por-
tion of the input data. The endmember sets are obtained by 
grouping all of the estimated endmembers into M  clusters 
using the K-means clustering algorithm. After extracting the 
endmember sets, any of the previously described spectral 
unmixing methods can be applied. 

SPARSE UNMIXING
The automated endmember bundles (AEB) technique treats 
endmember set estimation independently from proportion esti-

mation in unmixing. However, 
many endmember estimation 
approaches are paired with spectral 
unmixing steps such as with most 
sparse unmixing approaches. Vari-
ous sparsity approaches can also be 
categorized in terms of the specific 
sparsity constraint employed such 
as l0 -norm constraints or inclusion 

of l1  regularization terms. In the sparse unmixing approach for 
endmember variability presented by Castrodad et al. [21], end-
member set estimation is conducted in conjunction with 
unmixing on a training data set containing many examples of a 
material. In particular, given Nm  pixels composed purely of 
material m  that is denoted by the D Nm#  matrix Xm, the dic-
tionary elements representing the endmember set of material 
m, represented by the columns of the matrix Em

u , are obtained 
by minimizing the objective function  

( , ) ,R 1E P X E P Pm m m m m F S m
2

1m= - +u u (8)

where each column of Pm  represents the proportion values con-
tributed from different columns of Em

u , 1  is a length Nm  column 
vector of unity, and Sm  is a fixed regularization parameter. The 
Nm  pixels in Xm  are given from some training data, such as 
hand-selected from a ground-truthed data set. The second term 
in the objective function promotes more sparseness as sm

increases. The function is minimized through alternating optimi-
zation by solving for updated Em

u  and Pm  values, iteratively. After 
minimization of (8), the endmember set of material m  is con-
structed by maintaining the columns in Em

u  that are being used 
to describe the training set, 0jn 2: ,E j pem j n

N

1
m

e=
=

u$ ./
wheree denotes “such that,” pjn  is the ( , )j n  element of Pm. The 
minimization is conducted using a Gauss–Seidel type iteration as 
discussed in [21]. 

ONE ADVANTAGE OF SVM 
UNMIXING IS THAT SPECTRAL 

VARIABILITY IS AUTOMATICALLY 
TAKEN CARE OF WHEN CREATING 

SYNTHESIZED DATA FOR 
SVM TRAINING.
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After the dictionary elements are 
obtained, spectral unmixing can be 
conducted on previously unseen 
hyperspectral data xn. Let Em  be the 

| |D Em#  matrix whose columns are 
the elements of the dictionary Em

obtained above and where Em  is 
the number of elements in the thm
dictionary. Also, let pmn  be an 
| |E 1m #  vector that represents the proportion values of the ele-
ments in .Em  The unmixing is achieved through the minimiza-
tion of the following objective: 

x E p pn m
m

M

mn S mn
m

M

1 2

2

1
1

m- +
= =

/ /

,wp p
( )R

G mn ni
i n

mi
m

M

1 2

2

m+ -
!=

// (9)

where ( )R n  is the neighborhood defined around the thn
data point, / /expZw 1 x xini n i 2

2 2v= - -" , , Zi  is a pixel-
dependent normalization constant such that w 1

i ni =/ , 2v

is a fixed constant, and Gm  is a fixed regularization parame-
ter. The second term in the objective function promotes 
sparseness. The third term can be viewed as a spatial 
smoothing term in which pixels in the same neighborhood 
are encouraged to have similar proportion values. Increasing 

2v  enlarges the neighborhood region and larger Gm

enhances more spatial smoothing. 

LOCAL UNMIXING
Local unmixing (LU) extracts endmember sets with elements 
identified in spatial neighborhoods across the input hyper-
spectral image [22], [23]. In the technique developed by Goe-
naga et al. [23], an input hyperspectral image is divided into 
equally sized tiles. Local endmembers are extracted manually 
or using some endmember extraction method. The extracted 
local endmembers are clustered using spectral angle criteria 
to form the endmember sets. Proportion values are obtained 
by minimizing px eini

T
n i1 2

2
-

=
/  subject to p 0in 2  and 

.p 1ini
#/  The proportion of a material is computed by the 

sum of the proportion values associated with its clustered ele-
ments, .p pmn jnj Ee j m

=
e !
/

One interesting point of discussion is that LU approaches 
assume pixels that are spatially close are likely to be composed 
of the same materials. This assumption could be viewed as a 
balance between 1) the traditional hyperspectral unmixing 
algorithms that consider all pixels in a scene to be composed 
of the same endmember elements and 2) the pixel-to-pixel 
independent spectral variability approaches such as MESMA, 
AutoMCU, and MELSUM, where every input pixel in a scene 
could be composed of a completely unique collection of ele-
ments from across the endmember sets. 

Sparse unmixing applied to a dictionary consisting of several 
variants of each endmember can be used to address spectral var-
iability. In terms of LU, we can impose neighboring pixels with 

the same dictionary elements in 
their sparse representation. In the 
spectral-variability sparse unmixing 
approach presented above, in addi-
tion to the sparsity constraint, pix-
els in predefined neighborhoods are 
encouraged to be composed of the 
same materials at roughly the same 
proportion levels. The predefined 

neighborhoods are not restricted to spatial neighborhoods and 
could be neighborhoods-based spectral similarity. Similar ideas 
have been applied using the piece-wise convex unmixing meth-
ods, which identify groups of pixels (not necessarily spatial 
neighbors) that are constrained to have same endmember ele-
ments during unmixing [24]. 

These additional constraints based on spatial or spectral 
neighborhoods impose additional structures that further con-
fine the solution space during spectral unmixing. However, 
the applicability of each of these additional constraints is cer-
tainly data- and application dependent. 

ENDMEMBERS AS DISTRIBUTIONS
An alternative to the set-based approach to address spectral vari-
ability in a material is the use of a multivariate statistical distri-
bution. When endmembers are represented as statistical 
distributions, then, a sample from these distributions can be 
viewed as a possible variation on the spectral signature of the 
material being represented 

~ (· | ),Fem mi (10)

where isF  the multivariate statistical distribution used to 
represent an endmember, and mi  are parameters of the distri-
bution associated with the mth material. Under this approach, 
hyperspectral pixels are random variables distributed accord-
ing to the stochastic mixture model defined by the convex 
combination of the endmembers, ,px e

m

M
n mn m1
=

=
/  where 

em  is a random variable distributed according to ( | ) .F em mi

There is no additive noise in this model as variation in the x
value are accounted for through the stochastic model and the 
variability of the endmember distributions. 

A number of methods make use of a Bayesian approach for 
endmember estimation and spectral unmixing. When the dis-
tributions of the endmembers are completely specified, joint 
estimation of endmembers and proportions, such as Bayesian 
source separation and nonnegative matrix factorization, can 
also provide endmember variations in spectral unmixing [25], 
[26]. In particular, [25] assumes a Gamma distribution as the 
prior for each value of the endmembers. Such an approach 
requires the exact knowledge of the endmember distributions, 
which may not be easy to obtain in practice. In the normal 
compositional model (NCM) methods described below, the 
models imposed on the endmember distributions do not 
require complete specification and the unknown distribution 
parameters are jointly estimated together with proportions 
during unmixing. 

AN ALTERNATIVE TO THE 
SET-BASED APPROACH TO 

ADDRESS SPECTRAL VARIABILITY 
IN A MATERIAL IS THE USE OF 
A MULTIVARIATE STATISTICAL 

DISTRIBUTION.
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NORMAL COMPOSITIONAL MODEL
By far, the most prominent statistical distribution for endmem-
bers is the NCM [27] and, as a result, 

~ ,,N p p·xn mn
m

M

m mn
m

M

m
1

2

1
n R

= =

e o/ / (11)

in which ( | ) ( | , ),F Ne em m m m mni R=  where mn  are end-
member mean values and mR  are 
the endmember covariances. A num-
ber of methods for spectral unmixing 
and endmember estimation have 
been developed using the NCM. 

Stein [27] proposed an expecta-
tion-maximization algorithm to 
iteratively update proportion val-
ues for every input pixel as well as 
the mean and variance parameter values for each endmember 
distribution using the NCM, until convergence is reached. 

Under the condition that the mean values of the endmem-
bers are known, Eches et al. [28] developed a Markov chain 
Monte Carlo (MCMC) sampling approach for estimating pro-
portion values and the endmember distribution covariance 
using the NCM. The hierarchical Bayesian framework is 

| , ~ ,N p p·x p In n mn
m

M

m mn
m

M
2

1

2

1

2nv v
= =

e o/ / (12)

~ (· | )D 1pn (13)

| ~ , ),IG2v d o d (14)

where (· | )D 1  is Dirichlet distribution such that all parameter 
values are equal to one (i.e., a uniform distribution over the set of 
proportion values that satisfy the nonnegativity and sum-to-one 
constraints), ( , )IG o d  is an inverse-gamma distribution with 
parameter values o  and d  in which, for the implementation pre-
sented in [28], 1o =  and d  is assigned a given noninformative 
Jeffreys prior, and I  is the identity matrix. To estimate the 
unknown proportion [ , , , ] , , , ,p p p n N1pn n n Mn

T
1 2 f 6 f= =

the endmember variance 2v  and the parameter d , a Metropolis-
within-Gibbs sampler is used. In [28], endmember covariances 
are assumed to be diagonal and may not be identical. 

Zare et al. [24] also developed an MCMC sampling approach 
under the NCM. However, in contrast to the method by Eches 
et al., it assumes endmember covariance values are available and 
the endmember means and proportion values are to be estimated. 
The hierarchical Bayesian framework defined for a single set of 
endmember distributions is 

| , ~ ,N p p·x pn n mn
m

M

m mn
m

M

m
1

2

1
nP R

= =

e o/ / (15)

~ ,N · m Cmn ^ h (16)

~ (· | ),D 1pn (17)

where [ , , , ]M1 2 fn n nP =  is the collection of endmember 
means, [ , , , ]p p ppn n n Mn

T
1 2 f=  is the vector of proportion values, 

and m  and C  are hyperparameters defining the prior distribution 
on the endmember means. The m  and C  values are parameters to 
be fixed (such as setting them to the mean and covariance data). In 
[24], additional hyperpriors are applied to m  and C  such that 

~ ( / ) ,N N1·m Vx
n

N
n1=` j/  and ~ ( , )IW tC W  to allow for mul-

tiple sets of endmember distributions in a piece-wise convex mix-
ing model. Using the piece-wise 
convex approach, input data pixels 
are partitioned into sets that are com-
posed of mixtures of the same mate-
rials. The partitions are estimated by 
incorporating a Dirichlet process 
prior from which partitions of the 
input data set are sampled. To esti-
mate the endmember means and 

proportion values, a Metropolis-within-Gibbs sampler is proposed. 

BETA COMPOSITIONAL MODEL
The majority of investigation with endmembers as distribu-
tions has been conducted using the NCM. Yet, investigation 
into alternative compositional models, such as the beta com-
positional model (BCM) has been conducted [29]. Under the 
BCM, the input data points are random variables distributed 
according to a convex combination of beta random variables. 
The motivation for the use of the beta is that the values are 
constrained to the range from zero to one, which is appropri-
ate and a physically meaningful range for endmember reflec-
tance values. The spectral unmixing method developed in [29], 
based on the BCM, assumes known endmember parameter val-
ues and estimates proportion values for input pixels using an 
approximation to the BCM. 

METHODS OF HIGHER MOMENTS
In the approach presented by Bosdogianni et al. [30], rather 
than defining a fixed parametric form for each endmember 
distribution, given known values for the first and second 
moments of each endmember distribution, proportion values 
of an input data set are estimated by minimizing the squared 
difference between the first and second moments of the 
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[FIG1] RGB image (bands 56, 29, and 12) of 
the Pavia subscene. 

IN GENERAL, ENDMEMBERS AS A 
DISTRIBUTIONS APPROACH COULD 

HAVE A COMPUTATIONAL ADVANTAGE 
OVER ENDMEMBERS AS SETS IF THE 

ENDMEMBER SETS ARE LARGE. 
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estimated convex combination of the endmember values and 
those of the input data. Given that statistics of the full input 
data set are used to estimate proportion values, pixel-specific 
proportion values are not estimated but, instead, test-site 
wide values. An advantage to this approach is that the full 

parametric form for each endmember distribution does not 
need to be specified and, instead, only the first and second 
moments (equivalent to mean and covariance) of each end-
member distribution are needed. Using only the first two 
moments follows a symmetric distribution as in the NCM. 

[FIG2] The proportion maps of the Pavia subimage from VCA + FCLS: (a) AEB, (b) LU, (c) NCM-1 [28], (d) NCM-2 [24], and (e) of water; 
buildings and dirt; vegetation; and shadow. 
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However, presumably, this approach could be extended to 
include higher-order moments. 

RESULTS
A sampling of five methods, one from typical unmixing method 
without accounting for spectral variability, and two from each 
representation of spectral variability are used

1) VCA+FCLS  
2) AEB by Somers et al. [19] 
3) LU approach by Goenaga et al. [23]
4) NCM approach by Eches et al. [28] NCM-1
5) NCM approach by Zare et al. [24] NCM-2. 

These algorithms were applied to a 100 100#  pixel subimage 
collected by the Reflective Optics 
System Imaging Spectrometer 
(ROSIS) over an urban area of Pavia 
in northern Italy on 8 July 2002. The 
RGB image of the scene is illustrated 
in Figure 1. The image contains 
spectra from vegetation and man-
made objects. 

All the methods were set with 
four endmember sets or distributions .( )M 4=  Note that the 
performance could vary when a different value of M  is used, 
too-large M  splits a material across multiple proportion values, 
and too-small M  groups distinct materials. The results are 
shown in Figure 2. 

Each of these methods requires a number of parameter set-
tings that are encumbered with various tradeoffs between run-
ning time and accuracy. In VCA+FCLS, VCA is used for 
endmember extraction and fully constrained least-squares 
(FCLS) [31] is applied for proportion estimation. It does not 
assume spectral variability and is served as a reference for 
comparison. The AEB estimated the four endmember sets by 
repeatedly applying the VCA algorithm with 3,000 iterations to 
5,000 randomly sampled pixels from the scene. The proportion 
values were obtained using MESMA [19]. LU obtained end-
members on 33 #33-sized tiles across the image using VCA 
[20]. After which, the resulting local endmembers were clus-
tered into four endmember sets from which proportion values 
were estimated [23]. NCM-1 generated the means of the four 
endmembers using VCA and per-pixel proportion values were 
estimated using 1,000 iterations of MCMC-sampling. NCM-2 
used isotropic diagonal covariance matrices with values of 
0.01, and the corresponding MCMC sampling algorithm was 
iterated 200 times. 

The results are shown in Figure 2. As a measure of improve-
ment in spectral unmixing, we used two approaches: 1) the aver-
age per-pixel squared residual (signal fitting) error for each pixel 
and 2) the median of the proportion maps over the five methods 
as an ideal output to compute the residual unmixing error. The 
average squared residual errors were 

■ VCA+FCLS: 0.403
■ AEB: 0.009
■ LU: 0.010

■ NCM-1: 0.191
■ NCM-2: 0.108. 

The percentage in mean-square residual errors of the five meth-
ods were

■ VCA+FCLS: 32.3%
■ AEB: 5.9%
■ LU: 9.1%
■ NCM-1: 10.6%
■ NCM-2: 5.2%. 

The performance of the four methods with spectral variability is 
consistent and the amount of error reduction over VCA+FCLS is 
significant. Obviously, the cost of better results from spectral vari-
ability unmixing is the increase in computation time, which is 

proportional to the number of end-
members M. In general, endmem-
bers as a distributions approach 
could have a computational advan-
tage over endmembers as sets if the 
endmember sets are large. 

SUMMARY AND FUTURE WORK
This article presented an overview of 

methods that address spectral variability for hyperspectral unmix-
ing and endmember estimation. Although significant progress 
has been made in this area, there are several open lines of 
research. In particular, as discussed earlier, many of the current 
approaches rely on the availability of known spectral libraries, and 
results are highly dependent on the availability of appropriate 
endmember spectra. Given an extremely large spectral library, 
investigation into automated pruning and subselection of the 
library for maintaining scene-appropriate endmembers is needed. 
The applicability of these libraries depends upon items such as 
the inclusion of the materials found in the scene with the exclu-
sion of spectrally similar confusers. 

Automated parameter setting for all of these approaches is 
another subject for study. In particular, an appropriate selec-
tion of the number of endmembers can have a large impact on 
the quality of results. Many of the existing methods rely on 
manual selection through trial and error or broad assump-
tions (i.e., fewer numbers of endmembers is better). 

Additional investigation of methods to leverage spatial informa-
tion can be conducted. Methods employed in the image processing 
and computer vision communities make extensive use of color and 
texture information for scene understanding. An area of study is in 
how these or similar approaches can be transferred to hyperspec-
tral image analysis. The challenge is being able to effectively bal-
ance spatial information without loss of the subpixel information. 

In addition to linear mixing model as in (1), nonlinear mix-
ing (such as the bilinear model [1]) can be used to account for 
different phenomena such as multiple reflections or intimate 
mixtures of materials, resulting in more accurate endmember 
and proportion estimates. Interesting future work will include 
incorporating spectral variability into nonlinear mixing mod-
els and identifying when nonlinear or linear models with or 
without spectral variability are needed. 

AN OPEN PROBLEM REMAINS 
IN HOW TO DETERMINE WHETHER 

A PARTICULAR SPECTRUM IS 
A VARIATION ON AN ENDMEMBER 

OR A MIXED PIXEL WITH HIGH 
ABUNDANCE OF AN ENDMEMBER.
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Additionally, future investigation into models that limit 
variability to physically meaningful values should be con-
ducted. Also, all of the current methods in this area assume 
independent variation between the bands of an endmember. In 
practice, neighboring bands are often highly correlated and 
extension of these models to make use of full covariances to 
account for this correlation is needed. These models are also 
currently limited to representing all endmembers with distri-
butions of the same parametric form. It is possible that differ-
ing materials may be best represented with different forms. 
The extension of these approaches to mixed-form models is an 
interesting subject for research. 

Finally, future work remains in developing evaluation met-
rics or measured data sets with proportion-level ground-truth 
to allow for evaluation of methods that address spectral vari-
ability. An open problem remains in how to determine 
whether a particular spectrum is a variation on an endmember 
or a mixed pixel with high abundance of an endmember. 
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maging spectroscopy involves the sensing of a large amount 
of spatial information across a multitude of wavelengths. 
Conventional approaches to hyperspectral sensing scan adja-
cent zones of the underlying spectral scene and merge the 
results to construct a spectral data cube. Push broom spec-

tral imaging sensors, for instance, capture a spectral cube with 
one focal plane array (FPA) measurement per spatial line of the 
scene [1], [2]. Spectrometers based on optical bandpass filters 
sequentially scan the scene by tuning the bandpass filters in 
steps. The disadvantage of these techniques is that they require 
scanning a number of zones linearly in proportion to the 
desired spatial and spectral resolution. This article surveys 

compressive coded aperture spectral imagers, also known as 
coded aperture snapshot spectral imagers (CASSI) [1], [3], [4], 
which naturally embody the principles of compressive sensing 
(CS) [5], [6]. The remarkable advantage of CASSI is that the 
entire data cube is sensed with just a few FPA measurements 
and, in some cases, with as little as a single FPA shot. 

INTRODUCTION
CS dictates that one can recover spectral scenes from far fewer 
measurements than that required by conventional linear scan-
ning spectral sensors. To make this possible, CS relies on two 
principles: sparsity, which characterizes the spectral scenes of 
interest, and incoherence, which shapes the sensing structure 
[5], [7]. Sparsity indicates that spectral images found in nature 
can be concisely represented in some basis W  with just a small 

[Gonzalo R. Arce, David J. Brady, Lawrence Carin, Henry Arguello, and David S. Kittle]
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number of coefficients. This is indeed the case in spectral imag-
ing where natural scenes exhibit correlation among adjacent 
pixels and also across spectral bands [2]. Incoherence refers to 
the structure of the sampling waveforms used in CS that, unlike 
the signals of interest, have a dense representation in the basis 
W  [7]. The remarkable discovery behind CS is that it is possible 
to design sensing protocols capable of capturing the essential 
information content in sparse signals with just a small number 
of compressive measurements. The sensing modality simply 
correlates incoming signals with a small number of fixed wave-
forms that satisfy the incoherence principle. The signals of 
interest are then accurately reconstructed from the small num-
ber of compressive measurements by numerical optimization 
[5], [6], [8]–[11]. In CASSI, the random projections occur natu-
rally as the result of the optical dispersion phenomena affecting 
coded aperture light fields as they transverse a prism before 
these are integrated by the imaging detector. 

Our intent in this article is to overview the fundamental 
optical phenomena behind compressive spectral imaging sen-
sors, present the key mathematical concepts embodying the 
sensing and reconstruction mechanisms, and describe the opti-
mization framework used to design optimal coded apertures in 
a number of applications, including hyperspectral image recon-
struction, spectral selectivity, and superresolution. The article 
describes many practical aspects of the instrumentation, includ-
ing calibration, discretization models, parameter design, and 
physical limitations, and it illustrates results with real data and 
imagery. A fascinating aspect of compressive spectral sensing is 
that it draws from various disciplines within optics, signal pro-
cessing, and probability theory. Our survey is to highlight the 

rich interaction among these fields of study as they come 
together in the discovery of novel compressive spectral sensors. 
Our treatment explains as plainly as possible four fundamental 
aspects of CASSI: 

1) the sensing problem
2) coded aperture optimization
3) reconstruction algorithms
4) computational spectral imaging. 

It should be noted that compressive spectral imaging is of 
interest in many fields and advances in this area are growing 
rapidly. Consequently, it is not possible to review all work in 
the field, and we focus on CASSI type compressive optical 
sensing. The topics in this tutorial are complemented by a 
companion article in this issue [12], where other approaches 
and methods are described. 

THE SPECTRAL SENSING PROBLEM
The sensing physical phenomena in CASSI is strikingly simple, 
yet it adheres to the incoherence principles required in CS. In 
its simplest form, CASSI measurements are realized optically by 
a coded aperture, a dispersive element such as a prism, and an 
FPA detector [1], [3]. The coding is applied to the (spatial-spec-
tral) image source density ( ; ; )f x y0 m  by means of a coded aper-
ture ( ; )T x y  as realized by the CASSI system depicted in Figure 
1, where ( ; )x y  are the spatial coordinates and m  is the wave-
length [3]. The resulting coded field ( ; ; )f x y1 m  is subsequently 
modified by a dispersive element before it impinges onto the 
FPA detector. The compressive measurements across the FPA 
are realized by the integration of the dispersed field ( ; ; )f x y2 m

over the detector’s spectral range sensitivity. 

Focal Plane
Array
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y
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[FIG1] Compressive CASSI sensor components. (Image courtesy of David J. Brady and David S. Kittle.)
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The sensing mechanism is illustrated by the discretized 
model shown in Figure 2, where the spectral data cube F  hav-
ing L  spectral bands and N N#  spatial pixels is first amplitude 
modulated by a pixelated N N#  coded aperture T .

In this case, T  is a block- or unblock-coded aperture such that 
the energy along the spectral coordinate of the data cube is 
punched out when a block-coded aperture element is encoun-
tered. As the coded field transverses the prism, it is then spatially 
sheared along one spatial axis. In essence, each coded image 
plane at a fixed wavelength is shifted along the x-axis where the 
amount of shifting increases with the wavelength coordinate 
index. Finally, the coded and dispersed field is “collapsed” in the 
spectral dimension by the integration of the energy impinging on 
each detector element over its spectral range sensitivity. The inte-
grated field is then measured by the FPA detector elements. 

Several properties of the sensing phenomena model should be 
pointed out [13], [14]. First, note that the N N#  spatial dimen-
sions of the spectral data cube are mapped to an array of V N#
FPA measurements, where .V N L 1= + -  This is due to the dis-
persion of the optical field as it transverses the prism. Second, 
observe that the optical coding across rows of the FPA measure-
ments are mutually independent. That is, the aperture coding 
affecting one row slice of the data cube is independent from the 
coding affecting other row slices in the data cube. These charac-
teristics of the sensing phenomena are important, as they shape 
subsequent signal processing algorithms. Third, note how the 
sequence of optical transformations altogether end up in a set of 
compressive linear measurements in the FPA detector. As Figure 
2 illustrates, each FPA shot captures a massive set of compressive 
measurements. 

The discretized output at the detector can thus be mod-
eled as [3] 

,Y TF ( )( )( )kj j k k
L

j k j0

1
~= +, , ,,=

-
++/ (1)

where Y j,  is the intensity measured at the ,j ,  position of the 
detector whose dimensions are ( )N N L 1# + - , L  is the num-
ber of spectral bands, T j,  is the binary coded aperture, and j~ ,

is the noise of the system. In essence, (1) sums each of the spec-
tral image slices that have been coded and spatially shifted in 
proportion to the wavelength index k . Notice in (1) that each 
discrete spectral band is defined such that a continuous region 
of the analog spectrum span one pixel in the detector. 

Assume that the bandpass filter of the instrument limits 
the spectral components between 1m  and 2m . If the pixel width 
of the detector and of the coded aperture are both equal to D ,
then the number of resolvable bands L  is limited by 

(( ) / ( )),L 2 1a m m D= -  where for a given wavelength m , am
corresponds to the dispersion induced by the prism, i.e., to the 
displacement of light in the focal plane along the x-axis. 

The spectral resolution is limited by /aD . The horizontal and 
vertical spatial resolutions are limited by D , and the number of 
spatially resolvable pixels of the underlying scene is N N# .

For spectrally rich scenes or very detailed spatial scenes, a 
single-shot FPA measurement is not sufficient, and additional 
shots are required, each with a distinct coded aperture that 
remains fixed during the integration time of the detector. Time-
varying coded apertures can be realized by a spatial light modu-
lator or by a lithographic mask actioned by a piezoelectric 
device [4], [15], [16]. It was also shown in [15] and [16] that the 
ensemble of say, K L11  FPA shots in one-dimensional vector-
ized form ,, ,y y yT

K
T T

0 1f= -6 @  can be rewritten in the standard 
form of an underdetermined system of linear equations 

,y A Hi i ~W= = + (2)

where A H RKN LN2 2

!W= #  is the CASSI sensing matrix, i  is a 
sparse representation of the data cube in a three-dimensional 
(3-D) basis W, and ~  represents the noise of the system. A 
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[FIG2] An illustration of the spectral optical flow in CASSI. The thq  slice of the data cube F  with 11 nonzero voxels is coded by a row 
of the coded aperture and dispersed by the prism. The detector captures the intensity y  by integrating the coded light. 
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Kronecker basis 1 27W W W=  is often used, where 1W  is the 
two-dimensional-wavelet Symmlet-8 basis and 2W  is the cosine 
basis [17]. The matrix H  in (2) accounts for the effects of the 
coded aperture and the prism. The sensing matrix A  thus cou-
ples H  with the representation basis W. The coded aperture is 
considered binary, and the dispersive element is considered lin-
ear. In practice, it is necessary to take into account the various 
optical artifacts and nonideal characteristic of the optical system. 
Furthermore, the underlying principles of CASSI described 
above are general and are thus, in principle, applicable to imag-
ing with FPAs sensitive to any region of the visible and infrared 
(IR) radiation of the electromagnetic spectrum. 

Signal recovery in CASSI entails solving an underdetermined 
linear system of equations. Given the set of measurements y , the 

inverse CS problem consists on recovering i  such that the 
2 1, ,-  cost function is minimized 

| | | | | | | | ,arg min y A 2
1i im- +

i
(3)

where m  is a regularization constant. The inverse problem in (3) 
will be addressed next. At this point, however, it should be 
emphasized that the sensing matrix A  will play a pivotal role in 
sensing and thus its design is of key importance. Other cost 
functions could be used instead of (3). For example, an approach 
based on the stable recovery of a low-rank and joint-sparse 
matrix can be used to reconstruct the hyperspectral information. 
In this case, the optimization problem is regularized to mini-
mize jointly a nuclear norm and a 2 1, ,-  norm [18]. 

To illustrate the underlying concepts above, a wide spectral 
bandwidth reconstruction is shown in Figure 3, acquired with a 
recently developed UV-visible CASSI instrument [19]. The object 
was illuminated using SoLux daylight emulation bulbs and 
bandpass filtered by a Baader Planetarium (Germany) UV-IR cut 
filter with transmission from to420 680 nm. A random, binary 
coded aperture was used in the instrument with a minimum 
feature size of two pixels and total area on the detector of 

, ,1 988 1 988#  pixels. Figure 3 shows the comparison between a 
snapshot reconstruction and a multishot reconstruction with 
24 frames. The prism dispersion is nonlinear, where the shorter 
wavelengths disperse significantly more than longer wave-
lengths. This yields higher spectral resolution and lower spatial 
resolution in the shorter wavelengths and corresponding higher 
spatial resolution and lower spectral resolution for longer wave-
lengths, shown in the blue spectral channel in Figure 3(a) and 
the red spectral channel in (b), respectively.

Code features fewer than two pixels place high demands on 
the optics, alignment, and calibration of the CASSI instru-
ment, especially for small pixel size detectors. The coded aper-
ture is required to disambiguate the spatial and spectral 
information that is multiplexed at the detector. For smaller 
code features, the optical blur, forward model, calibration, 
detector noise, and pixel sampling of the code have a larger 
impact on the reconstruction. A code feature size of two pixels 
(total area of four pixels) guarantees that regardless of where 
the feature is sampled on the detector, it will cover at least one 
pixel to fully modulate the signal. Smaller features will gener-
ally modulate less, where the worst case scenario involves a 
one-pixel feature sampled by four pixels, reducing the modula-
tion to %25 . In general, sampling a square wave (in our case, 
the coded aperture) requires infinite sample points. Even a 
sine wave would require at least two pixels assuming spatial 
Nyquist sampling and interpolation under the assumption of 
lowpass filtering. At the limits of small code features, adequate 
models [14] are required to compensate for undersampling the 
coded aperture. 

A calibration process is realized in CASSI in which the spec-
tral channels are determined so that the centers of each channel, 
at the finest scale, are separated by one column of detector pix-
els. Thus, the position of a channel corresponds to a fixed 

489.9 nm 489.9 nm

612 nm

440.6 nm 449.2 nm 458.4 nm 468.2 nm

489.9 nm478.7 nm 501.9 nm 514.6 nm 528.3 nm

558.5 nm542.9 nm 575.2 nm 593 nm 612 nm

612 nm

(a)

(b)

(c)

[FIG3] A comparison between snapshot and multishot CASSI 
reconstructions: (a) snapshot, 490 nm and 24-frame 
reconstruction at 490 nm, (b) snapshot, 612 nm and a 24-frame 
reconstruction at 612 nm, and (c) selected wavelengths from the 
24-frame, reconstructed data cube. An RGB image of the object 
taken with an SLR digital camera is shown in the upper left part 
of (c). Notice the relative spatial resolution for the blue and red 
spectral channels. 
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dispersion in terms of detector pixels relative to a fixed spectral 
channel. Charge-coupled device (CCD) measurements at equally 
spaced wavelengths are taken after uniformly illuminating the 
coded aperture with monochromatic wavelength of light within 
the bandpass of the system. These calibration measurements are 
used to build a modified system operator that accounts for the 
optical blur and nonlinear dispersion. The set of measurements 
is obtained with careful efforts to reduce or remove certain data 
corruptive processes, including the dark noise on the CCD, the 
nonuniform spectral intensity of the calibrating light source, and 
the nonuniform spectral sensitivity of the CCD. An alternative 
calibration procedure can be realized using specifically designed 
coded apertures for calibration and by using a high-order model 
of the CASSI phenomena [14]. 

CODED APERTURE OPTIMIZATION
The sensing matrix A  in (1) plays a crucial role in the mathe-
matics of the inverse CS problem. A large body of literature in 
CS specifically deals with characterizing the “goodness” of A
[5], [6]. In CASSI, A  is determined by the matrix ,H  which can 
be shown to have the structure shown in Figure 4 [4], [15], [16]. 
It consists of a set of diagonal patterns (circled) that repeat in 
the horizontal direction, each time with a unit downward shift, 
as many times as the number of spectral channels. Each diago-
nal pattern, circled in Figure 4, is the coded aperture pattern 
itself. Just below, the next set of diagonal patterns are deter-
mined by the coded aperture pattern used in the next FPA shot. 
The matrix H  will thus have as many sets of diagonal patterns 
as FPA measurements. Initially, commonly used coded aper-
tures in CASSI included Hadamard matrices, S matrices, and 
Bernoulli random matrices [1]. 

The use of these coded apertures was principally motivated by 
the realization that they are well conditioned when used in least 
square estimation [1]. However, these code designs do not fully 
exploit the rich theory of CS. Given that the coded apertures 
determine the nonzero entries of the sensing matrix, the impor-
tant question can be asked: Can the coded apertures be optimally 
designed? Remarkably, the answer is yes, where the restricted 
isometry property (RIP) provides the optimization criteria [6]. 

The RIP establishes the conditions necessary for A  such that 
the 2,  norm of the underlying 3-D spectral image is approxi-
mately preserved under the transformation Ai . More precisely, 
for each integer , , ,S 1 2 f=  define the restricted isometry 
constant sd  of the matrix A  as the smallest constant such that 
the RIP inequality ( ) | | | | | | | | | | | | ( )1 1As s2

2
2
2

2
2# #i iid d- +

holds for all S -sparse vectors i  [7]. A more intuitive 
description of the RIP is that it requires that subsets of S
columns taken from A  to be nearly orthogonal, or equiva-
lently, that all | |m T#  column submatrices A | |T  of A  are 
well conditioned for all | | ST # . This, in turn, implies that 
all pairwise distances between S -sparse vectors are well 
preserved in the compressed signal space such that 
( ) | | | | | | | | | | | | ( )1 1A As s2 1 2 2

2
1 2 2

2
1 2 2

2
2# #i i i i iid d- - - - +

holds for all S -sparse vectors 1i , 2i . If the RIP holds for the 
sensing matrix A , one can discriminate among S -sparse signals 

in the compressed domain and consequently it is then possible 
to accurately reconstruct any i  from its projection .Ai

The RIP inequality can be rewritten as || | | | | | | | |A 2
2

2
2 #i i-

| | | |s 2
2id  or equivalently as | ( ) , | | | | | ,AA IT

s 2
2#G Hi i id-

where I  is an identity matrix. Constraining the vector i  to 
|| | | ,12

2i =  taking the supremum over all the vectors i  with 
( ) ,supp T1i | | ,ST #  and taking the maximum with 

respect to all the subsets T  leads to max , | |s nT Tm = 1 #6 @
( ),s A I| | | | | |max T T Tm -  where ,A A A| | | | || | |

T
T T T T=  and n N L2=

The probability of satisfying the RIP condition is thus calculated 
by estimating the statistical distribution of the maximum eigen-
value maxm  of the matrices .A I| | || | |T T T-

The design strategy is then formulated as seeking the set of 
coded apertures { , , },T Tj j

K0 1f, ,
-  such that 

, , ( ),argmin maxT T A A I
{ , , }

| | | | | |
, | |

maxj j
K

T T n S

T0 1

T T
T T T

j j
K0 1

f m= -
f

, ,
1 #

-

, ,
- 6 @ (4)

where the entries of A | | | |TT  are determined by the coded aper-
tures. For a set of K  coded apertures { , , , },T T Tj j j

K0 1 1f, , ,
-  as 

depicted in Figure 5, it turns out that the correlation variable 
[Figure 5(b)] 

z T T T T T Tj
j j j j j

K
j
K0 0 1 1 1 1

1 2 1 2 1 2 1 2g= + + +, , , , , , , ,
- - (5)

strongly influences (4) and consequently the RIP in CASSI [20]. 
As depicted in Figure 5, T Tj j1 2, ,

ii  is the product of two elements 
of the ith coded aperture, both at the jth row, but at the column 
positions 1,  and 2, . The first- and second-order statistics of 
z j

1 2, , , specifically the mean { }E z mj
1 2 =, ,  and ( ) ,zVar j 2

1 2 v=, ,

have a critical effect on (4). The expectation in this case is over 
the random selection of the entries .T Tj j1 2, ,

ii

Let the entries of W  be ,,j kW  then using the structure of 
the matrices H  in Figure 4, the entries A | | | | k kTT 1 2

^ h  can be 
obtained as [4] 
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[FIG4] The sensing matrix H where the (circled) diagonal 
patterns repeating horizontally correspond to the coded aperture 
pattern used in the first FPA shot. The second coded aperture 
pattern determines the next set of diagonals. The figure depicts 
the sensing of four spectral bands and two FPA shots.
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for , , , | | ,k k 0 1T1 2 f= -  where k1X  and .Tk2 !X  Note that 
the coded aperture entries determine z( )( )j r j r

j
2 1 2 2

1
- -  in (6), which in 

turn determine the statistical properties of the entries 
.A | | | | k kT T 1 2

^ h  It was also shown in [20] that the entries in (6) can 
be roughly approximated as independent and identically distrib-
uted Gaussian variables ( , ( ))C m0A N| | | | k k 1

2 2
T T 1 2

- v +^ h  such 
that the concentration of measure for this type of matrices can be 
applied [21]. A relation between the statistics of (6) and the proba-
bility of correct reconstruction is then established using the con-
centration of measure. The variance of the entries in the 
Gaussian approximation depends on the variance 2v  and mean 
m  of the variables .zi

1 2, ,  To guarantee that the diagonal elements 
of A | | | |T T  satisfy 1E A | | | | k kT T =^^ h h  for all ,k  these are normal-
ized by constraining the coded apertures to satisfy 

T Cji
K 2

0
1 =,=

- i^ h/  for all j  and ,,  where C  is a selectable con-
stant. The so-called Boolean-coded apertures are defined as those 
whose entries satisfy { , } .T 0 1j !,

i  In which case, /m C K2 2=  and 
( ) /K C2 2v = - ( ( )) .K K 12 -  The term m2 2v+  can be mini-

mized by setting C 1=  implying that in each spatial position, 
only one coded aperture from the ensemble of K-codes contains a 
nonzero value. Thus, for each j  and ,  the optimal coded aper-
ture entries under the criterion (4) are obtained by satisfying the 
constraints T 1j

0 =,
i  and T 0j =,

i  for .i i0!

Figure 5(a) illustrates an optimal Boolean ensemble for four 
coded apertures of size .64 64#  As indicated in the zoomed-in 
regions of the coded apertures, there is only one nonzero ele-
ment for each ,j ,  position of the ensemble. Figure 6(a) 

illustrates a portion of the ground truth of a 16-band spectral 
data cube sensed with a monochromator. Figure 6(b) illustrates 
a corresponding compressive measurement. Figure 6(c) shows 
the reconstruction of a data cube of 16 bands using the optimal 
Boolean-coded apertures. Figure 6(d) depicts the reconstruction 
using an ensemble with random entries. Notice in Figure 6 that 
the resulting spectral data cubes are shown as they would be 
viewed by a Stingray F-033C CCD color camera. 

RECONSTRUCTION FROM COMPRESSED
MEASUREMENTS
Several numerical algorithms are available to solve the inverse 
problem in (3). These can be grouped into one of five computa-
tional approaches [10]. Algorithms based on greedy pursuit itera-
tively find an estimate of the solution by selecting atoms of a 
dictionary and the correspondent weighting factors such that the 
signal can be represented as a linear combination of these vec-
tors. This approach is implemented by algorithms such as the 
orthogonal matching pursuit (OMP) and compressive sampling 
matching pursuit (CoSaMP). The second type of algorithms solve 
a convex optimization problem. This includes interior-point 
methods such as 1, -magic software and gradient-descent meth-
ods like the sparse reconstruction via separable approximation 
(SpaRSA), the two-step iterative shrinkage/thresholding algo-
rithm (TwIST), and the gradient projections for sparse recon-
struction algorithm (GPSR) [10], [22], [23]. The third approach 
uses a Bayesian framework that finds a maximum a posteriori 
estimator assuming a prior distribution of the unknown coeffi-
cients of the signal to recover [8]. Other techniques include 

(a)

T 0

T 0

T 1 T K–1

T 0

T 1

T 1

T K–1

T K–1
Off
On

(b)

j 1

j 2

j 1

j 2

j 1

j 2

[FIG5] (a) An optimal ensemble of four 64 64#  Boolean-coded 
apertures. White colored squares indicate ,T 1j =,

i  and black 
colored squares indicate T 0j =,

i . Zoomed-in areas show that 
each spatial coordinate in the ensemble contains only one one-
valued entry. (b) The elements T ( )j1 2 1, , -

k  and T ( )j1 2 2, , -
k  for 

, ,k K0 1f -=  are multiplied and the products are then added 
to obtain one realization of the random variable z  in (5).

(a) (b)

(c) (d)

[FIG6] (a) The original data cube and (b) compressive FPA 
measurement. Reconstructions from six shots using (c) Boolean 
(PSNR 40.41 dB) and (d) random (PSNR 27.72 dB). The resulting 
spectral data cubes are shown as they would be viewed by a 
Stingray F-033C CCD color camera. (Image courtesy of G.R. Arce 
and H. Arguello.)
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nonconvex optimization [24] and brute force, which attempts to 
find the solution by trying all possible support sets. A tutorial 
review of the algorithms in each of these class-types and their 
associated complexity is found in [10]. Typical computations per-
formed by these algorithms include matrix pseudoinverses, 
sparse basis transformations, and vector-matrix multiplications. 
Given that the underlying signals are high dimensional, these cal-
culations require a large number of floating point operations. For 
instance, in each iteration of the GPSR algorithm, approximately 

( )O KN L4  operations are computed where K  is the number of 
measurement shots, N  is the spatial dimensions, and L  is the 
number of spectral channels of the data cube. Reconstructions of 
large scenes are indeed overwhelming since they can take hours 
in desktop architectures [13], [16]. 

The computational burden can be ameliorated by working 
with separable sensing operators [25] or fast field-programmable 
gate array and graphics processing unit implementations of the 
reconstruction algorithms [26]. Instead of relying on hardware 
solutions, the computational complexity can be also addressed by 
exploiting the physical properties of the CASSI optical sensing 
phenomena. In particular, it is possible to reconstruct the under-
lying 3-D data cube from a set of reconstructions obtained from 
nonoverlapping FPA windowed measurements. In this manner, 
the GPSR reconstruction algorithm performs ( )O KB L4  opera-
tions per iteration on each B B#  windowed measurement with 

.B N4 4%  After the recovery of the set of images, these are tiled 
together to assemble the complete data cube reconstruction. 

Consider a B B#  measurement window Y ,m n
i  within the FPA 

detector at the ith shot, as shown in Figure 7, where the energy 
in the windowed measurements is traced back through the opti-
cal system. After the prism, the energy to be collected by the 
B B#  FPA window is a coded and dispersed square source cube 
with L  spectral bands. If these voxels are traced back before they 
impinge on the prism and the coded aperture, the voxels no lon-
ger form a cube but instead they form an oblique parallelepiped 
consisting of L  spectral bands, with each one shifted one spatial 
position in the horizontal axis. Figure 7 illustrates how an 
oblique parallelepiped Fmn  of the data cube, which is amplitude 

modulated by a coded aperture of size ( )B B L 1# + -  and spec-
trally sheared by the prism, results on a B B#  block of measure-
ments at the detector. In other words, the voxels that are sensed 
in a B B#  area of the detector emanate from an oblique volume 
in the source and not from a cube. Furthermore, the oblique par-
allelepiped volume, once it is sheared by the prism, is trans-
formed into a B B#  cube before it impinges onto the detector. 

The energy impinging on an adjacent nonoverlapping win-
dow at the FPA can be traced back to the source in a similar 
manner, such that the entire FPA measurement Yi  can be 
expressed as an ensemble of B B#  nonoverlapping measure-
ment windows as 

.Y
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> H (7)

The total number of windows in the set is ,N Vl l  with 
/N BN =l  and ( ) / ( ) ,BV N L 1= + -l ^ h  with B  determining 

the partition block size. 
Now consider the reconstruction of the oblique parallelepi-

ped based on its compressive projections .Y ,m n
i  The compressive 

projection of the parallelepiped block Fmn  is given by 

,y H fmn
i

mn
i

mn mn
i~= + (8)

where Hmn
i  is a B B L2 2#  submatrix of Hi  obtained by choosing 

the rows and columns that affect each windowed FPA measure-
ment, ymn

i  and fmn  are the vectorized representations of Y ,m n
i  and 

,Fmn  respectively. Equation (8) is referred to as the block-model 
projection. The set of windowed measurements from sequential 
FPA shots can then be assembled as in the CASSI model to obtain 

, ,y y ymn mn
T

mn
K T T0 1f= -^ ^h h6 @  and the correspondent matrices 

Hmn
i  are assembled as , , .H H Hmn mn

T
mn
K T T0 1f= -^ ^h h6 @  The matri-

ces Hmn
i  preserve the structure of Hi  in Figure 4 except that the 

dimensions are now considerably smaller. The multishot block 
CASSI model can be rewritten as 

.y H fmn mn mn mn~= + (9)
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[FIG7] Each B B#  window at the detector results from sensing a B B L# #  oblique parallelepiped block of the data cube. (Reprinted 
and used with permission from [13].)
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Each individual set of windowed measurements ymn  in (9) is 
now used to recover an oblique parallelepiped Fmn

t  within the 
data cube. A vectorized representation of Fmn

t  is then recovered 
by solving 

| | | | | | | |argminf y Hmn mn mn mn2 1
mn

i ixW W= - +
i

,l l lt
` j (10)

where il  is a sparse representation of fmn
t  in the basis .Wl

Notice that the inverse problem in (10) is similar to that in (3) 
of the traditional approach. The difference lies in that the spar-
sifying basis Wl representing the Kronecker product of a wave-
let basis and the cosine basis has smaller dimensions than W
since Fmn  is a smaller section of the data cube .F

The full data cube Ft  is assembled by tiling all the recon-
structed oblique parallelepipeds. Since the number of opera-
tions per iteration in CS reconstruction algorithm grows 
rapidly with the size of the measurement vector, the compu-
tational complexity in the block CASSI model decreases rap-
idly as the number of partitions increase. In particular, the 
GPSR in CASSI performs approximately ( )O KN L4  operations 
per iteration to recover a N N L# #  data cube using K FPA 
measurements. The block model reduces the number of 
operations to O KN B L2 2^ h operations. If distinct processors 

are used to reconstruct separately each of the N 2l  blocks, 
then the number of operations per core is .O KB L4^ h

Figure 8 illustrates the reconstruction quality attained by 
the block CASSI model. A detailed analysis of the block CS per-
formance in PSNR is presented in [13] where the improvements 
in image reconstruction are described at length. Figure 8 shows 
an original 512 512 32# #  data cube, the block model recon-
structed data cube, and the traditional CASSI model reconstruc-
tion. Using an Intel Core i7 3.30 GHz processor PC with 32 GB 
RAM memory, the block model and the standard CASSI take 
approximately . .K0 71 3 6+  min and . .K1 58 7 8+  min, respec-
tively, to reconstruct the complete data cube, where K  is the 
number of shots. The reconstruction of one parallelepiped asso-
ciated with a single block takes . .K0 045 0 28+  min; thus, if 
multiple processing is available, the block reconstruction can 
offer significant faster processing. 

The block CASSI model is general and can be used with any 
CS reconstruction algorithm. For instance, the Bayesian recon-
struction framework introduced in [27] is noteworthy, with an 
approximate posterior distribution on model parameters inferred 
assuming a prior distribution of the unknown coefficients of the 
signal to recover. In this approach, one seeks to recover not only 
multiple fmn  but to also infer on the underlying dictionary with 
which the data may be represented. Specifically, we wish 
to jointly recover all { }fmn  and ,Wl  where the latter is an over-
complete dictionary. It is assumed that ,fmn mn mni ~W= +l

where RB L U2

!W #l  with ;U B L22 mni  is sparse, and mn~

again represents noise. Each measurement is of the form 
.y Hmn mn mn mni ~W= +l  The theoretical underpinnings are 

developed in [28], where a number of illustrative experiments are 
given. A key distinction of this approach with conventional CS 
reconstruction algorithms is that Wl and mni  are estimated 
simultaneously, implying that the measurements are “blind” to 
the underlying W  in which each fmn  may be sparsely rendered. 
This is achievable because N Vl l different signals ymn  are jointly 
processed and analyzed. This framework has been coined as blind
CS [28]. In this framework, a prior is placed on the noise vari-
ance, and this is inferred within the analysis. The noise statistics 
are assumed Gaussian within the prior, but the posterior may dif-
fer from the Gaussian assumption. The dictionary learning 
employed here represents each patch of data in terms of a sparse 
subset of dictionary elements. One may show that this model has 
close similarities to Gaussian mixture modeling (GMM) with 
(near) low-rank covariance matrices [29], with this in turn closely 
related to recent work on low-rank data modeling [30]. Low-rank 
models assume the data live in a single linear subspace, with the 
GMM assume the data live in a union of linear subspaces [29]. 

COMPUTATIONAL SPECTRAL IMAGING
The coded aperture patterns determine the quality of CASSI 
measurements. Good codes provide better measurements that, 
in turn, render more accurate signal reconstructions. Compu-
tational spectral imaging goes a step further by jointly opti-
mizing the coded apertures and the computational modules to 
produce new types of imagery that could benefit vision in 

(a)

(b)

(c)

[FIG8] (a) The original RGB and zoomed-in version of the 
512 512 32# #  data cube. Reconstructions for 10 FPA 
measurement shots using (b) the block approach with block size 
B 64= , 31.84 dB and (c) the traditional reconstruction approach, 
30.99 dB. Block overlapped was used in this example [13].
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different applications. This tutorial describes computational 
algorithms for spectral selectivity and super resolution. Com-
putational tools exist for a number of other applications as 
detailed in the recent literature [1], [31], [36], [37] and in the 
companion article [12] in this issue.

SPECTRAL SELECTIVITY
It is often known a priori that objects of interest in a scene do 
not contain a spectral component over the full range of wave-
lengths but in a subset of wavelengths. Notably, the coded aper-
ture patterns can be designed so as to maximize the information 
content on a prespecified subset of spectral bands of particular 
interest. Spectral selectivity is of interest in many applications, 
including wide-area airborne surveillance, remote sensing, and 
tissue spectroscopy in medicine. The optimal spectral bands in 
airborne surveillance, for instance, depend on atmospheric con-
ditions, time of day, the targets of interest, and the background 
against which the targets are viewed [4], [15]. Efforts placed on 
acquiring the entire spectral image cube, to then throw away a 
large portion of this data is wasteful in many regards. 

To this end, coded apertures can be used to attain spectrally 
selective compressive measurements [4], [15]. A spectrally selec-
tive coded aperture, denoted as ,Ti  is formed from two concate-
nated coded apertures, which simplifies the optimization. The 
first coded aperture wi  is a structured code optimized to attain 
the spectral band selectivity. The second coded aperture ri  is a 
pseudorandom binary code necessary to attain randomized mea-
surements in CASSI. The coded aperture used in each measure-
ment is obtained by the Hadamard product ,T w ri i i

5=  and its 
optimization is divided in two parts. Since row measurements in 
CASSI are independently coded, the model in (2) is first rewrit-
ten as ,y H C wkk

V T k
0

1 1H=
=

- +l ^ h/  where y  is the compressive 
measurement and Hkl  representing a row of the data cube F  and 
the prism effect, C  is an antidiagonal matrix with all the non-
zero entries equal to one, and H  is a permutation matrix [4]. 
Note that the term C wT k 1H +^ h  represents the effects of the 
coded aperture operations on the sheared data cube .Hkl  Since 
the desired spectral bands of interest are known a priori, an 
approach to design the coded apertures is to create a desired 
compressive measurement d  where the data cube is first modi-
fied such that the spectral bands that are of no interest are 
zeroed out. A compressive measurement based on the modified 
data cube would be ideal in the sense that it would only contain 
information from the spectral bands of interest. The desired 
compressive measurement is then obtained as d H

K

V
k0

1
m=

=

-
l/

where the entries of m  are 1jm =  if the jth band is desired and 
zero elsewhere. The desired compressive measurement d  is next 
equated to the compressive measurement y  attained with the 
full data cube sensed by the CASSI imager leading to the follow-
ing structures for the coded apertures 

( ) , , .j L0 1w Cj j 1 1 fH m= = -+ - (11)

The solution in (11) requires L  vectors, however, the number of 
vectors can be reduced by exploiting their interdependence. More 

specifically, to estimate K L1  linearly independent weight vec-
tors, the coded apertures are arranged into the matrix 

, , .M w ww
L0 1f= -6 @  The minimum number of shots K  for a 

given set of bands of interest is the number of independent col-
umn K  of Mw  determined by ,K rank Mw= ^ h  the rank of the 
matrix Mw  [4]. The K  linear independent columns of Mw  are the 
linear independent weight vectors , ,w wW K0 1f= a a -6 @ selected 
from .Mw  The remaining L K-  columns of Mw  can be esti-
mated using the ensemble of vectors in .W

Once the components w j  of the coded apertures have been 
optimized, these are fixed and the companion pseudorandom 
components ri  are then optimized so as to further minimize 
the required number of shots. This is achieved by minimizing 
the rank of the matrix M r r Wt

K0 1
&f= -6 @  such that 

( ) ( ),rank rankM Mt w1  where &  is the element by element 
multiplication operator and where the search of the vectors ri

is such that the CASSI measurements better satisfy the RIP. 
The rank minimization of Mt  is an NP hard problem such that 
a stochastic algorithm can be used to approximately solve this 
optimization [4]. 

To illustrate the design of coded apertures with spectral 
selectivity, consider again the data cube F  with 512 512#  pix-
els of spatial resolution and L 24=  spectral bands ranging 
from 460 nm to 668 nm. The desired spectral bands are set to 

,461 479 641 668nm nm nm nmm = - -6 @ as depicted in Fig-
ure 9(e). In this case, the initial rank of the matrix Mt  is 24. 
Using a stochastic based optimization algorithm [4], the rank of 
the matrix Mt  is minimized to 12. The resulting spectral data 
cubes are shown as they would be viewed by a Stingray F-033C 
CCD color camera: Figure 9(a) shows the original bands, Figure 
9(b) depicts the reconstruction of the same scene from 12 Ber-
noulli random coded aperture compressive measurements, Figure 
9(c) shows the results when 12 optimized coded apertures are 
used in the sensing and reconstruction, and Figure 9(d) shows one 
of the optimal spectrally selective coded apertures. Figure 9 illus-
trates the gain attained by optimal coded apertures in terms of 
spectral resolution and higher quality of reconstruction. 

SUPERRESOLUTION
While FPAs are available across the IR spectrum, there is con-
tinued interest in the development of larger format FPAs for 
increased resolution [32], [33]. Increasing the size and resolu-
tion of FPAs comes with ever-increasing costs. Notably, coded 
apertures can be designed to yield superresolved reconstruction 
by leveraging computational imaging [34], [35]. The goal is to 
translate high-resolution scenes into compressed signals mea-
sured by low-resolution or small-format detectors. Superresolu-
tion can be attained not only spatially but also spectrally, where 
the number of spectrally resolved image planes is increased. 

Let cD  and D  be the coded aperture pitch and FPA pitch, 
respectively, and let / .r cD D=  A critical requirement to achieve 
superresolution is that .c 1D D  If ,cD D=  the resultant spec-
tral imaging system is equivalent to the standard CASSI archi-
tecture. On the other hand, when the pitch resolution of the 
coded aperture is reduced to the extreme where all the elements 
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of the coded aperture are mapped to just one pixel in the detec-
tor ,N cD D=^ h  the imaging system becomes the single pixel 
camera [12]. Superresolution CASSI is realized when the pitch 
resolution lies somewhere between these two extremes, i.e., 
when cD  lies in the interval ( / ), .ND D^ h  It is important to 
observe that the minimum value for cD  is limited by the dif-
fraction limit of the instrument. 

The random projections in superresolution CASSI are given 
by ,y DH iW=  where H  is the CASSI measurement matrix 
shown in Figure 4, and D  is a decimation matrix with size 
( ( )) / ( ) ( ),rN N L N N L1 1#+ - + -  where r  represents the 
decimation ratio induced by the low-resolution FPA [35]. The 
decimation matrix D  accounts for the integration of light in the 
detector when pixel mismatch c 1D D  is introduced. A set of K
low-resolution FPA measurements are first captured, each one 
having N M#l l compressed measurements, with /NN D=l  and 

( ) /M M L 1 D= + -^ h being the low-resolution detector height 
and width, respectively. Superresolution CASSI allows one to 
exploit subpixel information of a scene to obtain a high-resolu-
tion spectral image from low-resolution measurements. As the 

number of FPA measurement increases, the superresolved mea-
surements lead to a rapid increase of image reconstruction qual-
ity. The standard CASSI measurements, on the other hand, 
cannot provide improved performance after a few shots. Figure 
10 illustrates this concept for ,r 4=  where the CASSI image 
reconstruction quality after 48 shots (24.95 dB) is compared with 
the superresolved CASSI, which attains over a 3 dB gain in PSNR 
by exploiting subpixel information. 

CONCLUSIONS
Compressive spectral imaging with coded apertures benefits 
from the use of simple optical sensing elements to harness 
compressive projections. CASSI snapshot spectral imagers are 
both, remarkably simple and surprisingly efficient, making 
them attractive in a number of applications in remote sensing 
and surveillance. Their power emerges from the combination 
of optics with the rich theories of CS and computational imag-
ing. While CASSI spectral imagers naturally embody the con-
gruence of these fields, new spectral imagers as well as more 
general multidimensional imaging sensors are being discov-
ered by the use of more advanced optical and photonic devices 
as sensor elements. The potential of coded aperture optimiza-
tion and optical sensing in multimode and multidimensional 
imaging holds great promise in the near future, providing fer-
tile ground for signal processing exploration. 
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[FIG9] The resulting spectral data cubes are shown as they would be viewed by a Stingray F-033C CCD color camera. (a) The original 
desired bands. Reconstructed images with 12 shots using (b) random codes (26.92 dB) and (c) optimized codes (31.02 dB). (d) An 
optimal coded aperture is illustrated. (e) Wavelengths of desired bands. (Reprinted and used with permission from [4].) 

(a) (b)

[FIG10] (a) CASSI reconstruction (PSNR 24.95 dB) versus 
(b) superresolution CASSI reconstruction (PSNR 29.31 dB) for 
the sixth spectral band. In both cases 48 shots are used. 
(Images courtesy G.R. Arce and H. Arguello.)
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H
yperspectral imaging is a powerful technology for 
remotely inferring the material properties of the 
objects in a scene of interest. Hyperspectral images 
consist of spatial maps of light intensity variation 
across a large number of spectral bands or wave-

lengths; alternatively, they can be thought of as a measurement 
of the spectrum of light transmitted or reflected from each spa-
tial location in a scene. Because chemical elements have unique 
spectral signatures, observing the spectra at a high spatial and 
spectral resolution provides information about the material 

properties of the scene with much more accuracy than is possi-
ble with conventional three-color images. As a result, hyper-
spectral imaging is used in a variety of important applications, 
including remote sensing, astronomical imaging, and fluores-
cence microscopy. 

While hyperspectral imaging has great potential, acquiring and 
processing hyperspectral data comes with significant challenges. 
First, hyperspectral images are extremely high dimensional: in 
remote sensing applications one routinely encounters images 
over 1 GB in size. This dimensionality limits our ability to con-
duct fast and accurate inference (e.g., removing noise or identify-
ing significant spectral signatures). Second, designers of 
hyperspectral imagers face a myriad of tradeoffs related to photon 
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efficiency, acquisition time, dynamic 
range, and sensor size, weight, 
power, and cost. 

In this article, we review how 
novel sparse low-dimensional mod-
els are enabling sensor designers to 
tackle many of the above challenges 
and create new hyperspectral imag-
ing paradigms. We provide an overview the state of the art of 
hyperspectral image modeling with an emphasis on sparse mod-
els that exploit the fact that typical hyperspectral images, while 
high dimensional, can usually be represented using just a few 
elements from a basis or dictionary. We also explain how sparse 
models facilitate the design of novel hyperspectral imaging 
hardware for remote sensing applications. We pay special atten-
tion to cameras based on the compressive sensing (CS) frame-
work that achieve sub-Nyquist measurement rates. We then 
discuss the imaging design tradeoffs among noise performance, 
temporal/spatial/spectral resolution, and dynamic range that are 
afforded by the sensor system, the sparse image model, and 
noise and quantization errors. Finally, we conclude by describ-
ing how the combination of sparse image models and CS archi-
tectures can enable fast and accurate target detection. 

SPARSE MODELS FOR HYPERSPECTRAL IMAGES
We consider the problem of acquiring a hyperspectral data cube 
f Rd d dx y! # # m , where f , ,i j m  is the intensity of light in the hyper-
spectral image at location ( , )i j  and wavelength m . For nota-
tional simplicity, we also let f  denote a vectorized version of the 
hyperspectral data cube f, which is just a vector in Rd  where 
d d d dx y: :=
9

m. We model the hyperspectral image acquisition 
process as y Af w= + , where A Rn d! #  represents the propaga-
tion of light through the imaging system, y Rn!  is a collection 
of n  measurements generated by our imaging system (where n
may be less than d), and w Rn!  is noise. 

Due to the significant structure present in hyperspectral 
data cubes and the linear nature of the aggregation performed 
by many hyperspectral imagers, low-dimensional signal models 
for f  have received significant attention in the hyperspectral 
imaging community in a variety of applications, including 
image compression, denoising, and processing. Most models 
operate over a partitioning of the hyperspectral data cube into 
patches along a subset of the dimensions (spatial or spectral) as 
shown in Figure 1. Spectrum patches collect the intensities for 
a single spatial location and all wavelengths; band patches col-
lect the intensities for a single wavelength at all spatial loca-
tions; and local patches collect the intensities for small intervals 
of the three dimensions. Denoting the vectorized versions of the 
patches by the set { , , , }f f f( ) ( ) ( )l1 2 f , the goal of a low-dimensional 
signal model is to represent each one of these patches using a 
small number of degrees of freedom: we search for a representa-
tion dictionary D  that yields patch representations ( )ii  with a 
small number of nonzeros so that we can write f D( ) ( )i ii= ,

, ,i l1 f= . Below, we discuss two common choices for the dic-
tionary D.

Principal component analysis
(PCA) assumes that the data vectors 
f( )i  lie within or very close to a k-
dimensional subspace of R p  for 
some k p% , where p is the patch 
dimension. In PCA, one computes 
the empirical cross correlation 
matrix for the centered data C; the 

top k eigenvalues and corresponding eigenvectors of C are 
retained so each patch can be accurately represented as a linear 
combination of these eigenvectors. In practice, the number k  is 
chosen to obtain sufficiently accurate approximations of the 
patches. 

PCA provides an effective and simple way to approximate 
hyperspectral data. Consider the case in which the image f  cor-
responds to a scene with only a small number k d% m  of different 
types of spectra present across all pixels. In this case, it is clear 
that the spectral patches { }f:, :, m  will lie within a k -dimensional 
subspace of Rd dx y. PCA has been applied in this manner for 
hyperspectral image compression [1], classification, segmenta-
tion [2], and denoising under Gaussian [3] and Poisson noise 
models [4], [5]. Furthermore, PCA models can be estimated 
directly from a sufficiently large number of compressive mea-
surements given enough training data [6]. 

Sparse signal models are able to capture richer structure 
than PCA alone. Sparse signal models assume that the data vec-
tors { }f( )i  lie within (or close to) a union of k

p
` j subspaces of 

dimension ,k  where each subspace is spanned by a different 
choice of k  functions from the dictionary .D  For instance, 
these models may rely on a sparsity-inducing orthogonal trans-
form D  to obtain coefficient vectors .D f( ) ( )i

T
ii =  In words, the 

coefficient vector has a small number k  of nonzero (or signifi-
cant) coefficients, and so we can represent the vector f( )i  exactly 
(or approximately) as the linear combination of k  components 
of the transform .D  Sparsity models can significantly outper-
form PCA models in terms of approximation fidelity and are 

x

y Band
f:,:, λ

Local
fi1:i2, j1:j2, λ1:λ2

Spectrum
f i, j ,:

λ

[FIG1] An illustration of different partitions of a 
hyperspectral image into patches. The hyperspectral image 
spans two spatial dimensions ( ,x y ) and one spectral 
dimension (m ).

WHILE HYPERSPECTRAL
IMAGING HAS GREAT POTENTIAL, 

ACQUIRING AND PROCESSING
HYPERSPECTRAL DATA COMES

WITH SIGNIFICANT CHALLENGES.
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predominant in processing and compression of natural images. 
Examples of sparsity-inducing transforms include the discrete 
cosine and wavelet transforms. Such transforms can be applied 
straightforwardly to band patches, as they correspond to inten-
sity images for different light wavelengths. 

An additional contribution from the sparsity literature is the 
application of dictionary-learning algorithms to hyperspectral 
imaging [7]. These methods use a training data set of image 
patches to learn a dictionary D , which yields sparse (albeit 
high-dimensional) representations. However, in contrast to the 
transformations discussed earlier, the dictionaries learned here 
do not have orthogonal elements and require the application of 
custom algorithms for sparse approximation, described in 
“Sparse Recovery: Methods and Guarantees.” In recent years, 
sparsity has also been studied in contexts where the types of 
spectra (called endmembers) are known a priori and that each 
particular pixel is a linear combination of only a few of the end-
members [7], [8]. The sparse representation of the spectrum 
effectively identifies the component endmembers and their con-
centrations at each pixel, a process referred to as hyperspectral 
unmixing [8]. 

Various global sparsifying transforms, to be applied to the 
entire image rather than its patches, have also been proposed 
[9]–[11]. Unfortunately, the corresponding increase in dimension-
ality also increases the computational complexity of the transfor-
mation and approximation; furthermore, the improvements in 

approximation error are often not found to be significant enough 
to warrant the additional computational load. Nonetheless, it is 
possible to formulate global transformations with higher compu-
tational efficiency using combinations of patch transformations; a 
common example is to select a spectrum patch transform Dm  and 
a band patch transform D ,x y  and combine them using a Kro-
necker product D D D,x y7= m  [11]–[13]. PCA models for spectral 
patches can also be integrated with sparsity models for band 
patches through the use of Kronecker product matrices [11], [12]. 

SPARSE MODELS AND HYPERSPECTRAL IMAGERS
CS is the design of signal acquisition strategies that leverage 
sparse and low-dimensional models such as those described 
above to ensure accurate signal reconstruction or target detec-
tion with relatively few samples. The CS framework has received 
significant attention in the remote sensing community due to 
the complexities in hyperspectral imaging hardware designs, 
the high dimensionality of hyperspectral data sets, and the sig-
nificant degree of structure and redundancy present in hyper-
spectral images. In this section, we review baseline designs for 
hyperspectral imagers and describe several approaches for 
hyperspectral imaging. 

Conventional hyperspectral imagers must address a funda-
mental design problem: the transformation of a three-dimen-
sional (3-D) signal (in the spatial and spectral domain) into 
measurements obtained by optical sensing hardware, which is 

SPARSE RECOVERY: METHODS AND GUARANTEES
There are a number of algorithmic approaches to the problem 
of sparse signal recovery from compressive measurements. We 
will not provide a complete overview of the possible recovery 
algorithms here. Instead, we will merely provide a rough out-
line of what is possible. For further details, we refer the reader 
to [24] and references therein. 

Perhaps the most popular method for sparse recovery is 
1, -norm minimization (also known as basis pursuit or LASSO) 

,arg min y ADsubject to1 2 #i i i e= -
i

t (S1)

where ii1i i=/  denotes the sum of the magnitudes of the 
entries of i  and e  denotes the tolerable approximation distor-
tion. In addition to (S1), there are also a variety of greedy or 
iterative strategies, including state-of-the-art methods like com-
pressive sampling matching pursuit (CoSaMP) or iterative hard 
thresholding (IHT) [26], that treat the vector A yT  as a rough 
estimate of f  and obtain it  by iteratively identifying likely non-
zeros. In general, any standard sparse recovery algorithm can 
be applied to reconstruct a hyperspectral data cube from 
compressive measurements. However, as detailed in the main 
body of the article, physical characteristics of real-world com-
pressive hyperspectral compressive imagers should be consid-
ered when selecting and implementing such algorithms. 

Together with the development of efficient sparse recovery 
algorithms, there has also been significant recent progress on 
conditions that ensure that these algorithms obtain provably 
accurate estimates of the original signal f . One of the more 

common assumptions is that the sensing matrix A  satisfies the 
restricted isometry property (RIP), which essentially requires 
that Af f2 2.  for any k -sparse f  (i.e., for any f  such that 
we can write f Di=  where i  has at most k  nonzeros). 
Directly constructing a matrix A  that satisfies this property 
turns out to be rather difficult, but it is possible to show that if 
we construct A  at random, then with high probability it will 
satisfy the RIP. While a variety of random constructions exist, 
perhaps the simplest (and most relevant to practical compres-
sive hyperspectral imaging systems) is the so-called “Radem-
acher ensemble,” where each entry of A  is set to be either 

/ n1  or / n1-  with equal probability. Constructing A  in this 
fashion will, with high probability, lead to a matrix satisfying 
the RIP, provided that ( ( / ))logn O k d k=  [27]. Given such an A
and measurements y Af w= + , both the approach in (S1) as 
well as methods like CoSaMP and IHT satisfy a performance 
guarantee of the form 

,C w C
k

k
2 1 2 2

1#i i
i i

- +
-t (S2)

where ki  is the best possible k -sparse approximation to the 
original i  and ,C C1 2  are absolute constants. From it , we can 
then obtain the estimate f Di=t t , and when D  is an orthonor-
mal basis we can translate this guarantee on it  into one on ft .
Further discussion regarding what can be proven for more 
specific noise models and in the specific context of compres-
sive hyperspectral imagers is provided in the main body of 
the article.
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limited to two spatial dimensions. Thus, to design a hyperspec-
tral imager, one must establish a method to record this 3-D data 
using sensors that do not cover all three dimensions. For exam-
ple, one can use a one-dimensional (1-D) sensor (i.e., a spec-
trometer) to obtain a stream of spectrum measurements from 
the hyperspectral image one pixel at a time. Alternatively, one 
can use a two-dimensional (2-D) imaging sensor array to cap-
ture a single cut or section of the data cube at a time, which 
could be either a single band or an array of spectra for a single 
row/column of the spatial dimensions. In this section, we 
describe the most common designs of hyper spectral imagers as 
illustrated in Figure 2. 

Whiskbroom designs feature optics that focus on a specific 
spatial location and record either a sequence in time of voxel 
spectral measurements (using a tunable filter and a single sen-
sor) or an array of samples of the spectra (using a diffraction 
grating and a linear sensor array). The optical components in 
whiskbroom designs select a single pixel/spatial location at a 
time. Whiskbroom designs require a raster scan across the 
entire field of view and have higher capture latency than other 
designs; their dwell time on each specific pixel is reduced in 
comparison with other architectures with matching latency. 

Pushbroom designs feature optics that focus along one of 
the two spatial dimensions (using slit apertures, in comparison 
with pinhole apertures used by whiskbroom designs) and record 
a 2-D array of voxels corresponding to a spectral/1-D-spatial cut 
of the hyperspectral image (using a diffraction grating and a 2-D 
sensor array). The optical components are usually translated 
along one spatial dimension to scan the field of view. Although 
the latency of pushbroom designs is lower than that for whisk-
broom designs and their mechanical complexity is compara-
tively lower, both types of imagers introduce motion in the 
optics that can result in spatial distortion. 

Framing or staring designs feature optics similar to stan-
dard imaging cameras that capture 2-D images with additional 
optics that focus on a single wavelength or band of wavelengths 
using tunable filters. Their spatial resolution matches that of 
the sensor array, while spectral resolution is dependent on the 
tunable filter and latency requirements. The overall design of a 
staring camera is much simpler than its pushbroom and whisk-
broom counterparts. However, the latency due to the tuning of 
the optical filter is often longer than that of a pushbroom 
design’s scanning system. Furthermore, filtering significantly 
limits the quantity of light captured at the sensor. 

Compressive hyperspectral imagers address a common 
theme in the design descriptions above: the large number of 
samples in the spectral data cube results either in high acquisi-
tion latency or in significant requirements for the size of the 
sensor array in the imager. Thus, it can be desirable to reduce 
the number of measurements necessary for acquisition of the 
hyperspectral image at a target spatial and spectral resolution. 
Since one of the central goals in CS is to minimize the required 
number of measurements (see “Sparse Recovery: Methods and 
Guarantees” for more details), this has naturally led to its appli-
cation to hyperspectral imaging. In a compressive hyperspectral 

imager, we continue to model the imaging system as 
y Af w= +  where A  is an n d#  matrix, but here we will be 
specifically interested in the case where n  is as small as possible 
(and hopefully n d% ). 

In all of the cases below, the reduction in measurements 
is achieved through the multiplexing of the voxels of the data 
cube during acquisition through the optical path. The reduc-
tion in measurements can potentially translate to a reduc-
tion in acquisition latency and corresponding increase 
in reconstruction latency introduced by nonlinear sparse 
recovery algorithms. 

The single pixel camera [14]–[17], like whiskbroom designs, 
relies on a single spectrometer. However, the measurements do 
not focus on a single spatial location; rather, each measurement 
aggregates the intensities from a randomly selected subset of 
pixels of the image. Such selection is performed by program-
ming an optical modulator (such as a digital micromirror 
device) to reflect light from a subset of the pixels into the spec-
trometer while masking the light reflected from the rest of the 
pixels away from the spectrometer. Choosing this configuration 
for the optical modulator effectively causes the measurement at 
the single sensor at instance i  to correspond to the projection 
of each spectral band f:, :, m  onto a vector A ,s i , where A ,s i  is a 
binary 0/1 pattern encoding the masking sequence applied by 
the modulator. By stacking the m  vectors as rows of a matrix 
A s , the resulting measurement matrix can be expressed as the 

Diffractor

Sensor Array
(a)

Spectrometer

x

y

Spectrometer Array

x

y

(b) (c)

[FIG2] Hyperspectral imager architectures. (a) A spectrometer 
consists of a diffraction element (grating or prism) and a 
sensor array that records light intensities at a variety of 
wavelengths. (b) Whiskbroom designs move the spectrometer 
spatially throughout the image, scanning one location at 
a time. (c) Pushbroom designs scan the image along a spatial 
direction using a spectrometer array. 
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Kronecker product A I A s7= , where I  is the identity matrix; 
this measurement operator acts separately on each band. 

The compression achieved by the single pixel camera can 
significantly reduce the acquisition latency compared to whisk-
broom designs; however, depending on the number of measure-
ments required for recovery (which is dependent on the 
complexity of the scene), this design may not outperform push-
broom designs in terms of latency. However, the single-picture 
architecture can be modified to pushbroom or whiskbroom 
designs in a straightforward fashion [14]. The spatial resolution 
of this camera design is given by the resolution of the spatial 
light modulator, while the spectral resolution of this architec-
ture is given by the characteristics of the single spectrometer. 

The coded aperture snapshot spectral imager (CASSI) [18] 
employs a combination of diffraction prisms, coded apertures, 
and an optical sensor array to perform multiplexing of the vox-
els in the hyperspectral image. A dispersive element shears the 
hyperspectral data cube by enacting a distinct spatial transla-
tion for the light field at each wavelength; a coded aperture 
then masks certain pixels (spatial locations) of the sheared 
data cube, and a second dispersive element reverses the shear-
ing caused by the spatial translation to result in a modified 
hyperspectral image with masked voxels. This masked data 
cube is acquired using an optical sensor that effectively flat-
tens the hyperspectral image into a single snapshot. The 
imager is a completely static, single-shot design, resulting in a 
mechanically robust and inexpensive system. 

The spatial resolution of this design is governed by the sen-
sor array and the coded aperture (which should have matching 
resolutions), while the spectral resolution is governed by the 
degree of dispersion and feature size of the coded aperture. 
A simplified version of CASSI requires only a single dispersive 
element and captures the sheared data cube but requires the 
sensor array size to be ( )d d dx y# + m  [19]. This linear acquisi-
tion system can be effectively represented by a highly structured 

( )d d d d d dx y x y#+ m m  matrix with binary entries. CASSI is dis-
cussed in additional detail in a companion article in this issue 
[20], including coded aperture design and additional hyperspec-
tral image modeling. 

Complementary metal–oxide–semiconductor (CMOS)-
based CS approaches have recently emerged for optical imag-
ing [11], [21], [22]. In addition to the aforementioned 
optics-based designs, it is possible to combine these CMOS-
based approaches with standard pushbroom or framing designs 
to reduce the number of measurements taken with respect to 
the number of voxels. However, the resulting schemes still 
require each pixel of the image to be acquired by the CMOS 
device, and so there is no improvement in properties such as 
latency, resolution, etc. over those of the CMOS device. Exist-
ing implementations of compressive optical sensor arrays per-
form the computation of the required projections using 
metal-oxide-semiconductor electronics and are based on ran-
dom convolution [22], separable transformations [21], block-
based transforms [22], structured incoherent transforms like 
noiselets [11], and randomized integration via Sigma-Delta 

analog-to-digital converters (ADCs) [23]. The resulting 
measurement matrices are expressed in terms of a Kronecker 
product I ACMOS7 , where ACMOS  denotes the measurement 
operator implemented by the CMOS design and the Kronecker 
product represents the replication of the measurement process 
among the snapshots required by the particular camera design 
(e.g., across spectral bands for a staring camera or across shifts 
in a spatial dimension for a pushbroom camera). 

PERFORMANCE LIMITS AND TRADEOFFS FOR 
RECONSTRUCTING HYPERSPECTRAL IMAGES FROM 
COMPRESSIVE MEASUREMENTS
The compressive hyperspectral imagers described above enable 
a range of design tradeoffs among noise performance, temporal/
spatial/spectral resolution, and dynamic range. These tradeoffs 
take different forms depending upon what assumptions we can 
reasonably make about the sensing matrix A, the sparse or low-
dimesional structure of the hyperspectral image f , and the dis-
tribution of the noise w. We will first consider the classical CS 
setting with white Gaussian noise, and then discuss effects such 
as nonnegativity, quantization, and photon-counting noise. 

LIMITS OF CS RECOVERY IN GAUSSIAN NOISE
We begin with the simple observation model y Af w= +  but 
where the noise w, instead of being arbitrary, is independent 
and identically distributed (i.i.d.) Gaussian with mean zero 
and variance 2v . This leads to slightly different results than 
those described in “Sparse Recovery: Methods and Guaran-
tees.” Specifically, since the noise w  is now random, we con-
sider the expected recovery error. While we could directly 
apply (S2) and replace w 2  with v[ ]w nE 2 = , it is possi-
ble to get a somewhat tighter result (that does not increase if 
we take more measurements). In particular, under the 
assumption that Af f2 2. b , one can show that most stan-
dard sparse recovery algorithms yield an estimate satisfying a 
guarantee of the form 

,
log

C
k d

C
k

E
k

2 1 2
1#i i

b
v

i i
- +

-
lt8 B (1)

where C1l  and C2  are absolute constants. Note that we have 
replaced the standard RIP assumption (that Af f2 2. ) with 
the more relaxed assumption that Af f2 2. b  for some 
constant b , which is equivalent to saying that /A b  satisfies the 
RIP. This can be quite useful since the RIP induces a particular 
scaling of the matrix A  (unit-norm columns), while other scal-
ings of A  may be more natural in practice. Naturally, either an 
increase in b  or a decrease in v (which are essentially equiva-
lent) leads to improved estimation of i .

One might wonder whether the first term in (1), which rep-
resents the impact of the noise w  on the recovery error, can be 
substantially improved. It turns out that this dependence is 
essentially optimal. In fact, one can show that given the free-
dom to pick any matrix A  (not necessarily satisfying the RIP, 
but with the same energy as above, i.e., A dF

2 b= ) and use any
recovery procedure, there is no method that can improve on (1) 
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by more than a constant factor [28]. 
In other words, when it comes to 
sensing a sparse signal in the pres-
ence of Gaussian noise, standard CS 
algorithms are operating at the 
limit of what any system could 
achieve given a fixed set of nonadap-
tive, linear measurements (subject 
to some energy/signal-to-noise ratio 
(SNR) constraint on the sensing 
system A). Moreover, at least if we 
wish to have an error bound that holds for arbitrary sparse ,f we 
cannot substantially improve this situation even if we pick the 
rows of this sensing matrix A  in a sequential or adaptive fash-
ion [29], [30]. 

While the bulk of the CS literature has focused on the 
cases of bounded noise, as in (S2), or white Gaussian noise, 
as in (1), these may not necessarily be the most natural 
model in the context of hyperspectral imaging. In particular, 
Gaussian noise is not a particularly realistic model for pho-
ton noise, which arises often as limited available light (con-
strained by the aperture and latency requirements) is spread 
across a large number of pixels and spectral bands. We will 
address this more realistic noise model next. But first, we 
discuss an important difference between the standard CS 
framework and the problem of compressive hyperspectral 
imaging that arises due to the fact that our measurements 
are constrained to be nonnegative. 

EFFECTS OF NONNEGATIVE MATRICES 
AND OBSERVATIONS
Consider the mechanism described in “Sparse Recovery: Meth-
ods and Guarantees” for constructing the sensing matrix A,
where we set each element of A  to be / n1!  with equal prob-
ability. Unfortunately, in the context of linear optical imaging, 
such a sensing matrix cannot be implemented. In particular, we 
can think of A  as describing how light is propagated through a 
linear optical system, so that A ,i j  denotes the fraction of the 
total amount of light from the jth voxel in the hyperspectral 
image that contributes to the ith measurement. Clearly, the 
fractions cannot have negative values, so A 0,i j $ . Further-
more, the total amount of light sensed cannot be greater than 
the amount of light incident upon the system (i.e., photon flux
must be preserved); mathematically, this has several conse-
quences. Most generally, this means that if ja  denotes the jth 
column of A, then we must have ja 1 1# , since the entries in 
aj  correspond to how the light from voxel jf  is distributed 
across the detector array. This constraint ensures that the total 
photon flux is preserved, i.e., Af f1 1#  for all f  (where f ,
denoting the intensity of light at different locations and wave-
lengths, also consists solely of nonnegative elements). In some 
imaging systems, there are additional constraints on the entries 
A ,i j. For instance, in the single pixel camera architecture, if we 
assume that each measurement is allocated an equal amount of 
time, then the maximum possible value for A ,i j is /n1  (since 

only /n1  of the total amount of 
light is available during each mea-
surement period). 

These restrictions lead to a 
small gap between the hyperspec-
tral imaging setting and the stan-
dard theoretical treatment of CS. 
While it is possible to develop a spe-
cially tailored theory for certain 
classes of matrices with nonnega-
tive entries, and ultimately obtain 

bounds similar to (S2) or (1), it is perhaps more instructive to 
consider how to relate the desired RIP matrix A  with / n1!
entries to a physically realizable matrix Au  with entries of zero 
or /n1  (with equal probability). Specifically, one can imagine 
constructing Au  by adding / n1  to each element of A  to make 
each element either zero or / n2 , and then rescaling by 

/ ( )n1 2  to obtain a matrix with entries of zero or /n1 . In the 
i.i.d. Gaussian measurement noise model from above, the 
impact of this shifting and renormalization is that we can write 
our measurements as 

;y Af w
n

Af
n

f
w

2 2
1= + = + +u (2)

that is, we observe a scaled version of what we would ideally like 
to measure (Af ) plus a constant offset proportional to the total 
amount of light in the scene. The constant offset introduces 
some unique and nontrivial challenges. As we describe below, it 
has a significant impact on the noise variance in photon-limited 
settings. However, even in photon-rich settings, where we may 
accurately adopt a Gaussian noise assumption, the constant off-
set may cause challenges. 

First, consider recovering f  from y  using the standard 
sparse recovery methods described in “Sparse Recovery: Meth-
ods and Guarantees.” The nonnegativity of A  can lead to some 
important algorithmic challenges when the recovery algorithm 
has been specifically designed under the assumption that A  sat-
isfies the RIP. In particular, one of the consequences of the RIP 
is that A AT  acts like an isometry when applied to sparse vec-
tors. This fact is explicitly exploited by greedy algorithms that 
make decisions based on A yT , and sometimes implicitly 
exploited by some 1, -minimization solvers to speed conver-
gence. Unfortunately, this is no longer the case when the entries 
of A  are nonnegative, since in this case all the columns of A
are correlated with each other. For the algorithms that rely on 
this fact, simply plugging y  and A into the algorithm without 
any modifications will yield inaccurate reconstructions and/or 
slow convergence. 

Fortunately, in many cases it is possible to sidestep this 
issue. For example, in the context of (2), if we can use the 
data y  to accurately estimate f 1  (or can directly obtain 
an estimate of this value in advance), then we can set 

/ ( )y y f n21= -l  and then feed /y A n2andl ^ h into stan-
dard sparse recovery methods. This fix can significantly improve 
the speed and accuracy of reconstruction (although this 

WHILE THE BULK OF THE
COMPRESSIVE SENSING LITERATURE

HAS FOCUSED ON THE CASES OF
BOUNDED OR GAUSSIAN NOISE, 
THESE MAY NOT NECESSARILY

BE THE MOST NATURAL
MODELS IN THE CONTEXT

OF HYPERSPECTRAL IMAGING.
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approach can have significant noise implications in the low-
light regime; see [31] for details). 

Alternatively, it is also often relatively straightforward to 
modify the algorithm to rely less heavily on the RIP assump-
tion. For example, greedy algorithms can be modified by replac-
ing AT  with the pseudoinverse ( )A A AAT T 1=@ - . More generally, 
this can be viewed as a special case of preconditioning the data 
y , which is shown to significantly improve reconstruction 
accuracy [32], [33]. Note that it is also possible to modify stan-
dard sparse recovery methods to enforce nonnegativity in f  as 
well [34]. 

EFFECTS OF QUANTIZATION AND DYNAMIC RANGE
A more significant challenge posed by nonnegativity arises due 
to the fact that physical systems must ultimately also quantize 
the measurements y. Typically, a quantizer will have a fixed 
number of quantization levels arranged to cover the entire 
range of different values that elements of y  may take. When 
this range is precisely known in advance, each quantization 
level corresponds to a small interval of different values, yielding 
accurate measurements. In the context of the model in (2), 
however, note that we are actually trying to quantize small fluc-
tuations (determined by Af ) around a constant offset 

(determined by f 1) that will, in general, be unknown a priori.
This poses a challenge when using a traditional quantizer since, 
if the range of the quantizer is set to be too small, the elements 
of y  may fall outside the range of the quantizer, but if the range 
is too large, the small fluctuations determined by Af  will fail to 
use the full quantization range and the system will lose preci-
sion. This is especially problematic when using a quantizer with 
low bit depth. Thus, in the context of compressive hyperspectral 
imaging, quantization noise can be a significant source of error. 
A toy example illustrating this effect is presented in Figure 3, 
which demonstrates the challenge associated with designing a 
single mechanism for uniformly quantizing a signal with an 
unknown intensity or brightness, and hence an unknown con-
stant offset. 

We would like to be able to address this challenge in an 
automatic fashion, without resorting to manual tuning of the 
quantizer range for each scene of interest. One approach is to 
simply use very high bit-depth quantizers, but this can be 
costly and ultimately fails to fully address the challenge for 
broad ranges of brightnesses. A more robust approach is to 
compensate for the offset in hardware before quantizing [23], 
[35]. While this requires specialized sensor circuitry and can 
be somewhat costly, when designing a system that will be used 
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[FIG3] An illustration of dynamic range and quantization challenges in compressive hyperspectral imaging. In all plots, the horizontal 
axis is the sample index and the vertical axis is the signal intensity. (a) The depiction of the same sparse signal at three different 
intensity levels (brightnesses). (b) The depiction of unquantized compressive measurements of the signals on the left using the sensing 
matrix construction in (2). (c) The quantized measurements, rescaled for easy visual comparison. We apply the same 4-bit uniform 
quantizer, designed to quantize values between zero and 30, to each set of measurements. Clearly designing a quantizer capable of 
quantizing measurements from bright sources limits the accuracy of quantized measurements at lower intensities. 
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to image scenes of widely varying 
brightness the improvement in 
performance may be worth this 
increased cost. 

Yet another approach to this 
problem relies on some of the 
rather unique properties of ran-
domized measurements. In particu-
lar, the randomized measurements typically used in CS are 
democratic, generally meaning that they each contain roughly 
the same amount of information, and hence by taking addi-
tional measurements we can be robust to having large errors 
(or even erasures) on a subset of the measurements [36]. This 
has a number of consequences in the context of quantization. 
First, while classical systems typically try to set the quantizer 
range to ensure that saturation occurs with extremely low prob-
ability, it has been shown empirically that in CS systems one 
can obtain improved performance by allowing a nontrivial num-
ber of saturation events (e.g., on the order of 5–10%) [36]. Sec-
ond, it allows for a particularly elegant method for 
automatically adjusting a quantizer to mitigate the problem 
described above. In particular, if the measurements are obtained 
sequentially in time (as in the single pixel camera architecture) 
then one can perform automatic gain control to dynamically 
adjust the prequantization gain to ensure that some desired 
fraction of the measurements saturate the quantizer (on both 
ends of the quantization range). This approach ensures that the 
full range of the quantizer is exploited without the need to man-
ually measure the offset in (2), but it has the drawback of 
requiring a certain amount of “burn-in time” before stabilizing. 

Finally, it is worth noting that as long as we can compensate 
for the unknown constant offset in (2), CS actually has the 
potential to result in significant gains over noncompressive sys-
tems in terms of quantization error and dynamic range. In par-
ticular, in a noncompressive system, we typically would 
quantize each voxel using the same fixed quantization range, 
but voxel intensity can vary dramatically both spatially and 
across spectra. This causes saturation and loss of detail in bright 
and dark regions of the data cube. In contrast, by combining 
random combinations of voxels into a single measurement, com-
pressive systems dramatically reduce the dynamic range over 
which the measurements that we must quantize can fluctuate. 
This has been studied in the context of ADCs in [37] and can be 
seen by comparing Figure 3(a) and (b). For a given bit depth, this 
reduced range can allow for reduced quantization error in the 
compressive case. Exploiting this, along with the fact that by tak-
ing fewer measurements in a given time window we can use a 
lower-rate quantizer with a higher bit depth, there is potential for 
compressive systems to be more effective at mitigating quantiza-
tion error than traditional systems. 

EFFECT OF PHOTON-COUNTING NOISE
Up to this point, we have considered the impact of noise, non-
negativity, and quantization but only when the noise vector w
is signal independent. However, in many hyperspectral imaging 

contexts we are in fact photon lim-
ited, so that the total number of 
photons detected by our system is 
small relative to the desired resolu-
tion. In photon-limited settings, we 
may model the observations as 
obeying a Poisson distribution, 
which has a mean equal to its vari-

ance. This effect introduces serious limitations. In particular, in 
(2) we saw that the signal of interest was added to a constant 
offset. Since the mean and variance of Poisson noise are equal, 
this offset plays a critical role in controlling the noise variance. 

Some of the major theoretical challenges associated with the 
application of CS to linear optical systems in the presence of 
Poisson noise have been addressed in the recent literature [38], 
[39]. These works considered two novel sensing paradigms, 
based on either pseudorandom dense sensing matrices (akin to 
the shifted and scaled dense sensing matrix described above) or 
expander graph constructions, both of which satisfy the non-
negativity and flux preservation constraints. In these settings, 
for a fixed signal intensity (i.e., fixed f 1 ), the error bound 
actually grows linearly with the number of measurements or 
sensors, n , since a limited amount of light is spread across an 
increasing number of detectors, each with a decreasing SNR. In 
other words, keeping n  as small as possible (a central goal in 
CS) helps maximize SNR and reconstruction accuracy in a way 
not reflected in conventional CS bounds. Thus, incorporating 
real-world constraints into the measurement model has a sig-
nificant impact on the expected performance of a compressive 
hyperspectral imager, and these constraints should be consid-
ered carefully throughout any design process. 

EFFECT OF IMPERFECT SYSTEM MODELS
A major challenge in the design of compressive hyperspectral 
imagers is accurate knowledge of the projection operator A .
While we might design a system to have a particular sensing 
matrix A , calibration errors and optical effects will always intro-
duce inaccuracies. Even if we had the ability to estimate A  pre-
cisely, there are settings where using an approximation of A  has 
advantages; for instance, when we can approximately compute Af
using fast Fourier transforms, conducting sparse recovery is much 
faster than with a dense matrix representation of A.

When we run a sparse recovery algorithm with an inaccurate 
sensing matrix A, it corresponds to the observation model 

,y Af Ef wi = + +  where Ef  represents the difference between 
the true projections collected by hyperspectral imager and the 
assumed projections in A. The term Ef  can be thought of as sig-
nal-dependent noise. Analysis of the theoretical ramifications of 
these kinds of errors allow the designers of spectral imagers to 
accurately assess tradeoffs between accurate calibration of A  and 
computational efficiency [40]. 

ADDITIONAL TRADEOFFS
One of the advantages of compressive methods for hyperspectral 
imaging is that they also enable a range of new design tradeoffs. 

ONE OF THE ADVANTAGES
OF COMPRESSIVE METHODS

FOR HYPERSPECTRAL IMAGING
IS THAT THEY ENABLE NEW

DESIGN TRADEOFFS.
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For example, the single pixel camera 
architecture allows us to achieve 
high spectral resolution while trad-
ing off between spatial resolution and 
latency by adjusting the resolution of 
the patterns used by the optical mod-
ulator (a higher-resolution pattern 
will also require a larger total num-
ber of measurements, increasing spa-
tial resolution at a cost of higher 
latency). Alternatively, the CASSI system allows for low latency 
while trading off between spatial and spectral resolution. For all 
architectures, however, we have a fundamental tradeoff between 
resolution and the SNR. If we fix the latency (i.e., the total acquisi-
tion time, and hence the total amount of light incident upon a 
hyperspectral imager), then increasing either spatial or spectral 
resolution means decreasing the amount of light measured for 
each voxel in the hyperspectral image. As resolution increases, 
measurements become more photon limited and, therefore, noisy.

HYPERSPECTRAL TARGET DETECTION
FROM COMPRESSIVE MEASUREMENTS
In addition to enabling the design of new hyperspectral imaging 
hardware and acquisition methods, sparsity and other low-
dimensional structures provide new ways to efficiently process 
the data produced by these new sensors, in some cases without 
ever explicitly estimating the high-dimensional hyperspectral 
image [41], [42]. 

In this section, we address the question of whether compres-
sive measurements of hyperspectral images of the form 
y Af w= +  can be used to accurately and efficiently infer 
whether f  belongs to some target class without estimating f
directly. As a motivating example, consider the CASSI system 
discussed earlier: it collects one coded projection of each spec-
trum in the scene. One projection per spectrum is sufficient for 
reconstructing spatially homogeneous spectral images, since 
projections of neighboring locations can be combined to infer 
each spectrum. Significantly more projections are required for 
detecting targets of unknown strengths without the benefit of 
spatial homogeneity. One might ask how several such systems 
can be used in parallel to reliably detect spectral targets and 
anomalies from different coded projections. 

Hyperspectral imaging introduces several unique target 
detection challenges. For instance, in remote sensing applica-
tions each measured spectrum reflects the mixing of multiple 
spectra across a relatively large physical area—so that the 
spectrum of interest may be mixed with other spectra in 
unknown proportions. A mixed pixel model accounts for such 
interferences by modeling every spatial location as either a tar-
get material corrupted by background, or just background [43]. 
This background may be modeled using a multivariate Gauss-
ian distribution: ~ ( , )b 0N bR , so that we have mixed observa-
tions according to 

( ) .y A f b w y Abm = + + = + (3)

Thus, in the mixed pixel setting our 
ideal compressive observations are 
contaminated by Ab , which sug-
gests that the statistics of b  must 
be considered when choosing A .

One approach to this challenge 
is to apply a prewhitening filter 
P Rn n! #  to the mixed observa-
tions ym , with the goal of mitigat-
ing the effects of the background 

b . The prewhited observations can be expressed as 
,z Py Af wm= = +u u  where wu  is white Gaussian noise with vari-

ance one and A PA=u . This suggests choosing the hyperspec-
tral camera optical design, described by A , in a way that 
depends on the background covariance bR , so that the prod-
uct PA  facilitates accurate compressive signal classification 
and detection (e.g., a random n d#  matrix with i.i.d. ( , )0 1N
entries, commonly considered in the CS literature) [44]. 
This approach naturally provides fundamental insight 
into the robustness of compressive target detection to back-
ground contamination. 

TARGET DICTIONARIES
The goal of hyperspectral target detection is, in the context of 
mixed observations, to determine whether f 0=  (i.e., no target 
and only background is present) or which f  in a dictionary of 
target spectral signatures D  corresponds to the observations. 

Theoretical performance bounds provide key insight into 
how error rates scale with the number of measurements col-
lected, the spectral resolution of targets, the amount of back-
ground signal present, the SNR, and properties of D . In 
particular, let t  denote the minimum Euclidean distance 
between any two target spectra in the target class D , and let 
| |D  denote the size of the dictionary. Performance can be char-
acterized in terms of a method’s positive false discovery rate 
(pFDR), which measures the fraction of declared targets that are 
false alarms and is a useful metric in multiple testing scenarios 
such as this. 

A target detection method based on a nearest-neighbor 
approach applied to prewhited measurements z  yields the 
bound 

| | | ,|O n
1 1 4

1pFDR
D D

/n2 2 1
t

= + -

-

e o;= E G (4)

which decays with the number of measurements n  and the 
size of the target dictionary, but increases with t . Thus intro-
ducing new candidate targets which are very similar to exist-
ing candidate targets can significantly deteriorate 
performance, regardless of the spectral resolution d . Experi-
mental results show that using these theoretically supported 
designs of A , which account for background contamination 
and target dictionary properties, yields significantly better tar-
get detection accuracy than simply measuring low-resolution 
hyperspectral images [44]. 

INCORPORATING REAL-WORLD
CONSTRAINTS INTO THE

MEASUREMENT MODEL HAS
A SIGNIFICANT IMPACT ON 

THE EXPECTED PERFORMANCE
OF A COMPRESSIVE

HYPERSPECTRAL IMAGER. 
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TARGET MANIFOLDS
The fixed-dictionary hyperspectral target detection problem for-
mulation above is accurate if the signals in the dictionary are 
faithful representations of the target signals that we observe. In 
reality, however, the target signals will differ from those in the 
dictionary due to the differences in the experimental conditions 
under which they are collected. For instance, in remote sensing 
applications, the observed spectrum of a material will not match 
the reference spectrum observed in a laboratory due to differ-
ences in atmospheric and illumination conditions. In this case, 
one could reasonably model the target signals observed under 
different experimental conditions as lying in a low-dimensional 
submanifold of the high-dimensional ambient signal space; this 
has been shown to be an accurate model for hyperspectral 
images in [45]. 

Thus, in many practical settings, rather than differentiate 
among a finite collection of candidate spectra, we must differen-
tiate among a collection of candidate target manifolds. Target 
detection in this setting has two key components: 1) a search 
for the closest point in each candidate target manifold to the 
observation, followed by 2) a minimum distance-based detection 
step controlled by the desired false alarm probability. This 
approach has been dubbed smashed filtering in [41]. CS theory 
and methods yield insights into both these steps. Tradeoffs and 
performance bounds for the second step are described in the 
previous section. Furthermore, it is now known that the ran-
domized projections common in CS also preserve the structure 
of the manifold; this can be shown by adapting the earlier John-
son–Lindenstrauss lemma argument to a sufficiently dense 
sampling of the manifold [46]. This theoretical result implies 
that the first step of the smashed filter can be computed directly 
in the compressive domain.  

ANOMALY DETECTION
While in many settings target dictionaries can be formed in a 
laboratory or using “ground truth” data (usually collected at 
considerable expense and time), at times target dictionaries 
are simply unavailable. In such settings, one might be inter-
ested in detecting objects not in the dictionary. Here, the tar-
get signals of interest are anomalous and are not known a
priori to the user. The target detection methods discussed 
above can be extended to anomaly detection by exploiting the 
distance preservation property of the sensing matrix A  to 
detect anomalous targets from projection measurements, as 
detailed in [44], [47], and [48]. 

CONCLUSIONS AND FUTURE DIRECTIONS
Due to the enormous size of hyperspectral images with high 
spatial and spectral resolution, approaches that enable efficient 
data collection, signal reconstruction, and target detection tasks 
have enormous practical potential. The good news is that typical 
hyperspectral images have significant structure that can be 
exploited within the context of sparse models and CS. Armed 
with such models, we can engineer novel compressive sensors 
and reconstruction algorithms. 

On the surface, the application of the CS theory and algo-
rithms to hyperspectral imaging appears very promising. How-
ever, one of the central themes of this article is that these 
theories and methods cannot be applied blindly to this applica-
tion arena. For a compressive hyperspectral imaging design to 
be truly effective, it must account for the physical constraints 
of the measurements system, use appropriate quantization 
methods, accommodate realistic noise models (including pho-
ton noise, background signal effects, and calibration errors), 
and use reconstruction algorithms that specifically account 
for all of these effects. None of these aspects can be considered 
in isolation, and any system design that ignores these issues 
has limited potential. 

Despite these caveats, researchers are pushing the boundar-
ies of our collective knowledge of how to exploit signal struc-
ture for improved sensing and inference. For example, while 
sequentially selecting the rows of A  in an adaptive fashion is of 
limited benefit in some of the hardest possible sparse recovery 
problems [29], [30], in high SNR regimes or settings where we 
have structured or group sparsity (common in hyperspectral 
imaging), adaptivity can potentially yield significant gains. 
Exploring the applications of these ideas to practical imaging 
systems is an important area of ongoing research. 
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I
mage inpainting refers to the 
process of restoring missing or 
damaged areas in an image. 
This field of research has been 
very active over recent years, 

boosted by numerous applica-
tions: restoring images from 
scratches or text overlays, loss 
concealment in a context of 
impaired image transmission, 
object removal in a context of 
editing, or disocclusion in 
image-based rendering (IBR) of 
viewpoints different from those 
captured by the cameras. 
Although earlier work dealing 
with disocclusion has been 
published in [1], the term 
inpainting first appeared in 
[2] by analogy with a process 
used in art restoration. 

Image inpainting is an 
ill-posed inverse problem 
that has no well-defined unique solution. 
To solve the problem, it is therefore necessary to introduce image pri-
ors. All methods are guided by the assumption that pixels in the known and unknown parts of the 
image share the same statistical properties or geometrical structures. This assumption translates into differ-
ent local or global priors, with the goal of having an inpainted image as physically plausible and as visually 
pleasing as possible. 

The first category of methods, known as diffusion-based inpainting, introduces smoothness priors via 
parametric models or partial differential equations (PDEs) to propagate (or diffuse) local structures from the 
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exterior to the interior of the hole (as shown in Figure 1, where 
U  denotes the unknown part or the hole to be filled in, and S
the source or known part of the image). Many variants exist 
using different models (linear, nonlinear, isotropic, or anisotro-
pic) to favor the propagation in particular directions or to take 
into account the curvature of the structure present in a local 
neighborhood. These methods are naturally well suited for com-
pleting straight lines, curves, and for inpainting small regions. 
They, in general, avoid having unconnected edges that are per-
ceptually annoying. However, they are not well suited for recov-
ering the texture of large areas, which they tend to blur. 

The second category of methods is based on the seminal work 
of Efros and Leung [3] and exploits image statistical and self-
similarity priors. The statistics of image textures are assumed to 
be stationary (in the case of random textures) or homogeneous 
(in the case of regular patterns). The texture to be synthesized is 
learned from similar regions in a texture sample or from the 
known part of the image. Learning is done by sampling, and by 
copying or stitching together patches (called examplar) taken 
from the known part of the image. The corresponding methods 
are known as examplar-based techniques.

With the advent of sparse representations and compressed 
sensing, sparse priors have also been considered for solving the 
inpainting problem. The image (or the patch) is in this case 
assumed to be sparse in a given basis [e.g., discrete cosine trans-
form (DCT), or wavelets]. Known and unknown parts of the 
image are assumed to share the same sparse representation. 
Examplar-based and sparse-based methods are better suited than 
diffusion-based techniques for filling large texture areas. Hybrid 
solutions have then naturally emerged, which combine methods 
dedicated to structural (geometrical) and textural components. 

This article surveys the theoretical foundations, the different 
categories of methods, and illustrates the main applications. 

THE INPAINTING PROBLEM
An image I  can be mathematically defined as 

:
( ),

I
x I x
R Rn m

"

"1X
(1)

where x  represents a vector indicating spatial coordinates of a 
pixel ,px  which in the case of a two-dimensional (2-D) image 
( ),n 2=  is defined as ( , ) .x yx =  In the case of a color image, 
each pixel carries three color components ( )m 3=  defined in 
the , ,R G B^ h color space. Each thc  image color channel of I  is 
denoted : .I Rc "X  In the inpainting problem, the input image 
I  (i.e., each color channel of the image) is assumed to have 
gone through a degradation operator, denoted ,M  which has 
removed samples from the image. As a result, the generic defi-
nition domain X  of the input image I  can be seen as composed 
of two parts: ,S U S,X =  being the known part of I  (source 
region) and U  the unknown part of ,I  which we search to esti-
mate. The observed degraded version F  of the image can also be 
expressed as .F MI=

The goal of inpainting is to estimate the color components 
of the pixels px  located at each position x  in the unknown 

region ,U  from the pixels located in S  the known region, to 
finally construct the inpainted image. The objective in terms of 
quality is that the recovered region looks natural to the human 
eye, and is as physically plausible as possible. Typical inpainting 
artifacts are unconnected edges, blur, or inconsistent pieces of 
texture (also called texture garbage).

DIFFUSION-BASED INPAINTING USING 
SMOOTHNESS PRIORS
The term diffusion comes from the idea of propagating local 
information with smoothness constraints, by analogy with physi-
cal phenomena like heat propagation in physical structures. 
These phenomena can be formalized with PDEs, and diffusion is 
therefore performed using PDE-based regularization. Inpainting 
using diffusion smoothly propagates local image structures from 
the exterior to the interior of the hole, “imitating” the gesture of 
professional painting restorators. The considered data are 
assumed to satisfy smoothness constraints and are iteratively reg-
ularized, producing a continuous sequence of smoother images. 

Image regularization can be defined locally as the diffusion of 
pixel values using PDEs, or formulated as the minimization of a 
functional measuring a global image variation. Moreover, to pre-
serve edges, the regularization (or smoothing) must follow direc-
tions given by the local image structure. If the pixel is located on 
an image contour, the smoothing must be performed along the 
contour direction and not across boundaries. If the pixel is located 
in an homogeneous region, the smoothing can be performed in all 
directions. The first step is therefore to retrieve the local image 
geometry and then use PDEs or variational methods to describe 
continuous evolutions of the image and of its structures. 

RETRIEVING IMAGE LOCAL GEOMETRY
Local image geometry is in general retrieved by computing gray 
level lines (also called isophotes) or structure tensors. 

ISOPHOTES
Isophotes are lines of constant intensity within an image as 
shown by the red lines in Figure 1. Their directions at a given 
pixel px  (located on the front line) are given by the normal to 
the discretized gradient vector computed at this point, which 
will be mathematically expressed as Id =  (instead of I pxd =  for 
simplifying the notations). In the case of 2-D color images I
with three color channels, the derivatives are first computed 
separately for each color channel and then added to produce the 
final color gradient in the pixel location px . The discretized gra-
dient vector gives the direction of largest spatial changes, while 
its 90° rotation is the direction of smallest spatial changes, 
hence, of the isophotes. 

STRUCTURE TENSORS
Another method used to retrieve local geometry is based on 
the computation of the spectral elements of the structure ten-
sor, also called the Di Zenzo matrix [4]. The structure tensor 
for a scalar image (with only one color channel) is computed 
at each point px  as ,G I ITd d=  where the term Id  denotes 
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the image spatial gradient, and the term ITd  denotes the 
transpose of the image gradient. In the case of color images 
with three color channels, the structure tensor is computed 
for each color channel and the results are then added as 
G I I

c
c cT

1
3 d d=
=
/  to produce the structure tensor of the 

image .I  By using the spectral decomposition, the structure 
tensor G  can be expressed as ,G RDRT=  where the columns 
of R  are the eigenvectors ( v1  and v2 ) of G  and D  is the diag-
onal matrix whose entries are the corresponding eigenvalues 

1m  and .2m  The orientation of the eigenvector v2  correspond-
ing to the smallest eigenvalue 2m  is the orientation with the 
lowest fluctuations (i.e., of the isophote; see Figure 1). The 
orientation of the eigenvector v1  corresponding to the highest 
eigenvalue 1m  gives the gradient direction (i.e., of the normal 
to the level curve at this point). The retrieved local image 
geometry can be used to control directions along which pixel 
values are propagated in the inpainting process, as well as the 
regularization strength. 

In the following paragraphs, we first recall the basics of PDE-
based regularization and then present how PDE-based regulariza-
tion is used for inpainting. We finally give the main ideas of 
image regularization and inpainting with variational methods. 

BASICS OF PDE-BASED REGULARIZATION 
OR DIFFUSION
The simplest formulation concerns isotropic regularization (or dif-
fusion), which stems from the linear heat (or heat flow) equation 

,
t

I F
I I

( )t 0

2
2 D

=

=

=

* (2)

where F  is a degraded version of the original picture .I  The term 
ID  denotes the image Laplacian. The PDE evolution is parameter-

ized with a time variable ,t  which describes the continuous pro-
gression of the function .I  Isotropic diffusion, which minimizes 
these variations in all directions, acts as a low-pass linear filtering 
suppressing high frequencies in the image. For this reason, the 
method suffers from blur close to edges and contours. More gen-
eral formalisms (using nonlinear PDEs), first used for describing 
physical and fluid dynamics phenomena, have been introduced to 
better preserve edges and sharpness. 

NONLINEAR ISOTROPIC DIFFUSION
The heat equation can be rewritten in a divergence form as 

( ),t divI I I
2
2 dD= = (3)

where the notation (.)div  stands for the divergence operator 
which measures how fast a vector field (here image intensities) 
is changing in x and y directions. This led Perona and Malik in 
[5] to introduce a nonlinear extension of the heat equation, as 

It gdivI I2

2
2 d d= ^^ h h (4)

by introducing a diffusion coefficient (also called conductivity 
coefficient), which is a scalar in ,0 16 @ returned by a decreasing 

function (.)g  of the image gradient. The goal of the diffusion 
coefficient is to limit diffusion around edges and avoid smoothing 
across region boundaries. Two functions have been proposed in 
[5] for computing the diffusion coefficient 

( )g eI ( / )I 2

d = d a- (5)

and
( )

( / )
,g

1
1I

I 2d
d a

=
+

(6)

where a  is a constant chosen experimentally to control the sen-
sitivity to edges. The function (.)g  vanishes in the neighborhood 
of steep edges (high gradients) and returns a value close to 1  on 
flat regions (low gradients). 

The method is often referred to as anisotropic diffusion even 
though it is rather a nonlinear diffusion. Indeed, the filter applied 
locally is isotropic, but its response is adapted locally and varies 
in space so that the diffusion process is lessened near edges and is 
strong in homogenous areas. A good review of this model can be 
found in [6]. 

ANISOTROPIC DIFFUSION USING TENSOR FIELDS
One step further has been to introduce locally adapted filters for 
performing truly anisotropic diffusion close to image structures 
such as edges [7]. Anisotropic regularization (or diffusion) refers 
to a smoothing in privileged spatial directions with different 
weights. Weickert in [7] used a field of diffusion tensors to find 
privileged directions of diffusion. 

The diffusion tensor D  (symmetric and positive-definite 
matrix) is derived in each point ( , )x yx =  of the image from the 
spectral elements of the structure tensor G I ITd d=  as [7] 

,D v v v vT T
1 1 1 2 2 2m m= + (7)

where v1  and v2  are the eigenvectors ( 1m  and 2m  are the cor-
responding eigenvalues) of the structure tensor )G . Pixel val-
ues are therefore anisotropically smoothed along local 
directions given by the eigenvectors v1  and v2 , with weights 
(or smoothing strength) given by the corresponding eigenval-
ues. In other words, the eigenvalues determine the diffusivities 

S

U

Hole
(Unknown
Region)

Source (Known Region)

[FIG1] Isophotes or lines (in red) of constant intensity 
represented for one out of ten pixels with a zoom on one region 
of the image. (Original image courtesy of [39].)
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in the directions of the eigenvectors. The diffusion is governed 
by the PDE 

( ) .t divI D I
2
2 d= (8)

Note that, if D  equals the identity matrix, we obtain the heat 
equation, i.e., isotropic diffusion. Note also that the tensor can 
be regularized with Gaussian kernels, which leads to a smooth-
ing of the image with small elongated kernels along edges and 
with Gaussian-like kernels in homogeneous regions. An edge-
enhancing diffusion (EED) is further proposed in [7], where the 
diffusivity decreases with the increased contrast in the direction 
perpendicular to edges. The effect of the varying diffusivity of 
EED can be seen in Figure 2. A coherence-enhancing diffusion 
(CED) is also proposed in [8], which increases the diffusivity 
along the coherent direction given by v2  when the coherence 
measured by ( )1 2

2m m-  increases. 

ANISOTROPIC DIFFUSION USING ORIENTED LAPLACIANS
Image smoothness (and its variation) can also be measured by a 
discretization of the 2-D Laplacian of the image, instead of 
using gradient or divergence operators. Anisotropic diffusion 
models are in this case expressed as 

,t
I I I1 2v v v v1 1 2 22
2 m m= + (9)

where the terms Iv v1 1  and Iv v2 2  are the image Laplacians, i.e., 
the second derivatives of I  in the directions given by the vec-
tors v1  and v2  that, as above, are derived from the local image 
structures (gradients, isophotes, or tensor fields). Here again, 
the above equations can be applied on each color channel of 
the image separately or on vectors formed by the three compo-
nents (R,G,B) of color images to smooth multivalued images. 

The diffusion is controlled by the knowledge of the smooth-
ing directions v1  and v2 , and the corresponding weights 1m

and 2m . This can be seen as heat flows oriented along orthonor-
mal directions given by v1  and .v2

INPAINTING USING DIFFUSION PDES
The use of regularization or diffusion for image inpainting was 
pioneered by Bertalmio et al. [2] in 2000. All PDE-based image 
regularization methods (isotropic or anisotropic) described in 
the previous sections can be used for inpainting. The authors in 
[2] use an anisotropic model that propagates image Laplacians 
[as formalized by (9)] from the surrounding neighborhood into 
the interior of the hole. The directions of the propagation are 
given by the directions of the isophotes estimated by the per-
pendicular to the image gradient in each point. The algorithm 
numerically solves the equation 

( )t
I I I
2
2 d dD= = (10)

for the image intensity I  inside the hole, until a steady state 
solution ( ( ) 0I Id dD == ), which means that the image Lapla-
cians ( )ID  remain constant (no variations captured by the 

gradient )d  in the directions Id =  of the isophote. The term 
( )I Id dD =  is the derivative of ID  in the direction ,Id =  leading 

to a smooth continuation of available information (the Lapla-
cians) inside the region to be inpainted. In other words, the 
image information is propagated inside the missing region in a 
way that aims at preserving the isophote directions. The analogy 
between this propagation of image intensity along smooth level 
curves and the transport of vorticity in fluid dynamics formal-
ized with the Navier–Stokes equations has been established in 
[9]. The image intensity is seen as a stream in fluid dynamics 
and isophote lines are seen as flow streamlines. 

Variants have then been proposed in the use of anisotropic 
diffusion for image inpainting, for either reducing complexity or 
better preserving structures. PDE-based methods require imple-
menting iterative numerical methods that are generally quite 
slow. A fast marching technique is described in [10], which esti-
mates the unknown pixels in one pass using weighted means of 
already calculated pixels. A trace-based PDE model is proposed 
in [11] to regularize multivalued images (with multiple color 
channels). It was observed in [11] that Gaussian behavior inher-
ent to the use of tensors for defining orientation and strength of 
the diffusion degrades the reconstruction of curved image 
structures such as corners. This observation led the author in 
[11] to use heat flows constrained on integral curves to better 
preserve curvatures in image structures. 

Diffusion methods tend to prolong structures (e.g., iso-
photes) arriving at the border of the region to be filled in. These 
methods are hence successful for piecewise smooth images, for 
propagating strong structures, or for filling small gaps. How-
ever, they are not well suited for textured images, especially if 
the region to be completed is large. Although intended to pre-
serve edges, after a few diffusion iterations, the inpainted region 
appears smooth with a lot of blur when the missing region is 
large. Figure 2 shows inpainting results after a few iterations 
when using two different diffusion equations: isotropic diffusion 
with heat equation, and edge-enhancing diffusion (EED) [7]. 
Isotropic diffusion introduces a blur over the entire region to be 
filled in. On the contrary, EED (and similarly for CED) intro-
duces less smoothing across edges. Figure 3 illustrates typical 
artifacts of diffusion-based inpainting methods when the hole to 
be filled in is large. 

VARIATIONAL INPAINTING
Image regularization, hence image inpainting, may also be formu-
lated as a variational problem where the image is seen as a func-
tion of bounded variation (BV). The total variation (TV) image 
model, first proposed for denoising and deblurring applications in 
[12], has been applied to image inpainting in [13]–[15]. The 
energy function is based on the total variational norm, hence the 
name of the TV image model. 

Keeping the goal of a smooth propagation of image inten-
sity, the idea consists in searching for a function ( )I xt  of BV on 
the set X  (BV(X )) on which the input image I  is defined, 
which minimizes a TV energy (defined as the integral of the 
gradient magnitude) of the image inside the hole, under some 
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constraint of fidelity to image observations. The minimization 
problem is written as 

( ) | ( ) | ( ( ) ( )) .J d dI I x x I x I x x
\

2
TV

U
d m= + -

X X

t t t# # (11)

The first integral term represents the regularization term, 
whereas the second term is a data term measuring the fidelity of 
the reconstructed image to the input image for the known sam-
ples. The difference with the denoising problem in [12] resides in 
the fact that the second integral is computed over \UX  instead 

of the entire domain X . The regularization strength can be seen 
as spatially varying, where ( ) 0xm =  in U . It can also vary locally 
according to the image geometry or to given image models. 

Note that a variational formulation has been first applied to 
the disocclusion problem in [1] where the image is reconstructed 
from a set of level lines defined as BV functions. The level lines 
within the hole are geodesic paths joining isophotes arriving at 
the boundary of the hole. This method is the first variational 
approach where the detection of the isophotes is followed by their 
variational continuation across the hole. 

(b) (c)(a)

(e) (f)(d)

[FIG2] The diffusion process with isotropic diffusion after (a) ten, (b) 20, and (c) 600 iterations. Edge-enhancing diffusion [7] after (d) 
ten, (e) 50, and (f) 600 iterations.   

[FIG3] Typical blurring effects of (a) and (b) diffusion-based methods (example with the method in [10]) when the hole to be filled in is 
large. [(a) courtesy of [39]. (b) generated by Christine Guillemot and Olivier Le Meur.]

(a) (b)
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TV regularization is an effective inpainting technique that is 
capable of recovering sharp edges with, however, some prob-
lems of connectivity. To further improve the edge connectivity, 
the TV inpainting model has been extended by introducing in 
the regularization term energy functionals taking into account 
curve structures, via curvature-driven diffusion models [16], or 
the Euler elastica functional [17]. 

EXAMPLAR-BASED METHODS
A second family of inpainting methods has appeared in the last 
decade based on seminal work on texture synthesis [3], [18] 
with the aim of better recovering the texture of the missing 
area. The texture synthesis problem is slightly different from 
image inpainting. The goal of texture synthesis is to create a 
texture from a given sample as shown in Figure 4, in such a 
way that the produced texture is larger than the source sample 
with a similar visual appearance. This problem is also referred 
to as sample-based texture synthesis. There is a vast body of 
work on texture synthesis, using either local region growing 
or a global optimization. 

Examplar-based inpainting has been, for a large part, 
inspired by local region-growing methods that grow the texture 
one pixel or one patch at a time, while maintaining coherence 
with nearby pixels. 

Most local pixel-based synthesis techniques rely on Markov 
random fields (MRFs) modeling of textures. Instead of running 

a complex probabilistic inference on the graphical model of the 
MRF for learning the missing pixels from the input sample, 
simpler, yet efficient, approximate solutions have been proposed 
in [3]. Exploiting both locality (the color of a pixel being 
assumed to depend on its local neighborhood only) and station-
arity (the dependency is independent of the pixel location), the 
missing pixels are learned by sampling and copying the central 
pixel of a patch from the sample texture that best matches the 
known neighborhood of the input pixel to be synthesized, 
according to a certain distance. Similarly, in [18], the output 
image is generated pixel-per-pixel in a raster scan order choos-
ing at each step a pixel from the sample image which neighbor-
hood is most similar to the currently available neighborhood in 
the texture being synthesized. Texture synthesis methods have 
evolved from pixel-based to patch-based techniques, with recent 
enhancements relying on elaborated blending and quilting 
strategies, using, e.g., graph-cut techniques to minimize energy 
terms along a seam. We come back to this issue in the section 
“Patch Stitching with Blending and Quilting.” 

Texture synthesis methods directly apply to the inpainting 
problem where the known part of the image can be seen as the 
input texture sample from which the missing pixels can be 
learned [as illustrated in Figure 5(a)]. 

The simple pixel-based texture synthesis technique in [3] 
proceeds as follows. Let px  be a pixel located at position x  in 
the image I , and pxW  be the patch centered on the pixel px .
This patch has a known part ( )p

S
xW  and an unknown part ( )p

U
xW .

The idea is to search for the patch p jW  (centered on )p j  the 
most similar to the input patch pxW . The central pixel p j  hav-
ing a neighborhood most similar to the known neighborhood of 
px  is then copied to recover px . Image information is therefore 
pixel-per-pixel propagated from the known part to the unknown 
part of the image. 

This pixel-per-pixel recovery algorithm suffers from a 
high computational cost, even if its complexity can be 
reduced by constraining the search for best matching 
patches among the candidates of the neighboring pixels that 
have been already inpainted [19]. Another limitation is the 

[FIG5] The principle of examplar-based methods: search for the patch the most similar to the known part of the input patch to be 
completed and copy the central pixel for (a) pixel-based approaches or (b) a set of pixels for patch-based approaches. (Figure used with 
permission from [24].)

Copy
Central
Pixel

pj pj

px pxΨpx Ψpx

Ψpj Ψpj

X

X

X

X

Copy
Sub-
Patch

(a) (b)

Pixel-Based Texture Synthesis Patch-Based Texture Synthesis

Texture
Sample

Synthesized
Texture

[FIG4] The texture synthesis problem. The goal is to produce  
a texture larger than the input sample with a similar visual 
appearance. (Figure used with permission from the 
Massachusetts Institute of Technology.)
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difficulty for this type of approach to synthesize textures that 
are not frontal (with some perspective transformations) and 
to fill in large and dispersed holes. Moreover, although per-
forming better than diffusion methods on textured areas, the 
pixel-based synthesis techniques often suffer from synthesis 
errors propagation and from repetitive patterns, which look 
unnatural especially in the case of stochastic textures. They 
also run into difficulties when synthesizing texture formed 
by an arrangement of small objects. 

Approaches synthesizing entire patches rather than only one 
pixel at a time have then emerged to cope with the drawbacks 
just mentioned. Instead of synthesizing the missing region pixel 
per pixel, the idea of patch-based solutions is to recover entire 
patches in one step by sampling and copying texture patterns 
(entire patches) from the source [20]. The first step for estimat-
ing the pixels in the unknown part p

U
xW  of the patch again con-

sists in searching for the patch p jW  (centered on ),p j  which is 
the most similar to the patch .p

S
xW  But this time, all the pixels 

from p jW  which are located at the same position as p
U

xW  are cop-
ied to estimate the unknown pixels of the input patch, as shown 
on the right side of Figure 5. 

The terminology examplar-based inpainting now mostly 
refers to these methods that synthesize entire patches by learning 
from patches in the known part of the image. Since they synthe-
size entire patches at once, these methods are faster than pixel-
based approaches. Many variants have then been introduced to 
optimize patch-based methods. These variants concern: 

■ distance metrics for finding best matching patches
■ fast search of best matching patches 
■ patch processing order 
■ global spatial coherence via constrained search or global 
optimization 
■ patch stitching with blending and quilting 
■ methods to learn unknown pixels from best matching 
patches 
■ multiscale refinement.
These variants are discussed in the next section. 

ISSUES AND VARIANTS OF 
EXAMPLAR-BASED INPAINTING

DISTANCE METRICS
Several metrics exist for measuring similarity between images 
or between image patches. The most widely used metrics can be 
classified in the following categories: pixel-based metrics mea-
suring the similarity in terms of difference or cross-correlation 
between pixel color values and statistics-based metrics measur-
ing the similarity between probability distributions of pixel 
color values in patches. The sum of squared differences (SSD), 
the L p  norm, as well as the normalized cross-correlation 
belong to the first category. Statistics-based metrics include the 
Bhattacharyya distance, the normalized mutual information 
(NMI), and the Kullback–Leibler divergence. 

The most widely used metric to search for similar patches is 
the SSD. However, as observed in [21], the SSD introduces 

some bias towards uniform regions. In other words the SSD 
favors the copy of pixels from uniform regions. 

A weighted Bhattacharya distance has been proposed in 
[21] ( )d( , )SSD BC  to cope with this limitation. This metric is 
computed as 

( , ) ( , ) ( , ),d d d( ) p p p p p p,SSD BC SSD BCx j x j x j#W W W W W W= (12)

where the term ( , )d p pSSD x jW W  is the SSD between the two patches 
pxW  and .p jW  The term ( , )d p pBC x jW W  is a modified Bhattacharya 

distance given by ( , ) ( ) ( ) ,d h k h k1
kp p 1 2BC x jW W = - /  with 

h1  and h2  representing the histograms of patches pxW  and 
,p jW  respectively. 
However, when two patches have the same distribution, their 

distance dBC  is zero, hence the weighted Bhattacharya distance is 
also zero, even if one patch is a geometrically transformed version 
of the other one. A variant of the weighted Bhattacharya distance 
addressing this problem is proposed in [22] where the SSD is mul-
tiplied by (1+ ) .dBC  When two patches have the same distribution, 
the distance value is equal to the SSD between the two patches. 

Note that other distance metrics also exist that account for 
geometrical transformations [23]. Transformed (rotated, scaled, 
and mirror) versions of existing patches are, in this case, included 
as possible match candidates [24]. 

FAST SEARCH OF BEST MATCHING PATCHES
Examplar-based inpainting methods first search for K-nearest 
neighbors (K-NNs) within the known part of the image. A naive 
solution to the NN search problem is to compute the distance 
from the query patch to all possible candidate patches, treating 
each patch as a point in a high-dimensional space. Faster and 
approximate NN search methods exist that organize the candi-
dates in specific space-partitioning data structures, such as the k
-dimensional trees (kd-trees) [25] or the vantage point trees (vp-
trees) [26], according to their distribution in the search space. The 
kd-trees are a special case of binary space partitioning trees that 
divide the space along different coordinates. The set of data points 
is bisected at the median of all points in a selected dimension to 
build a binary tree. The vp-tree, instead of splitting along coordi-
nate values, splits the set of data points according to their distance 
to a specific point called the vantage point. The NN search can 
then be efficiently done by using the tree properties to quickly 
eliminate large portions of the search space and check only a 
small portion of candidates. The kd-tree-based matching is one 
of the most widely used algorithms for finding the nearest 
patch. However, its number of searched nodes increases expo-
nentially with the space dimension. When the dimension is 
large (e.g., higher than 15), its search speed becomes very slow. 
Several NN search algorithms are assessed in [27] for finding 
similar patches in images. 

The tree-based approximate NN (ANN) search methods 
treat the queries separately. A randomized patch search algo-
rithm called PatchMatch was introduced in [28], which 
exploits dependency among the queries to perform some col-
laborative search. The idea relies on the assumption that 
images are coherent. Once a pair of similar patches has been 
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found in two images, then their neighbors in the image plane 
(patches shifted by a few pixels) are likely to be also similar. 
Therefore, the matching result of a query patch can be propa-
gated to the nearby queries, providing a good initial guess that 
is then updated by some randomly sampled candidates. 

PatchMatch is a fast algorithm for computing dense approxi-
mate NN correspondences between patches of two image regions. 
The set of approximate correspondences is called an NN field 

(NNF). The method searches for the NNF by proceeding as 
follows. The NNF is first initialized either by random values or 
prior information. Initializing the NNF with a random guess 
is likely to provide few good guesses. The NNF is then itera-
tively refined by interleaving two operations called propaga-
tion and random search at the patch level. The propagation 
step updates a patch offset with the known offsets of its causal 
neighborhood, exploiting the image coherency. At even itera-
tions, offsets are propagated from up and left patches, whereas 
at odd iterations, offsets are propagated from right and bottom 
patches. The second operation performs a local random 
search to seed the patch matches, and these matches are then 
propagated by iterating a small number of times. 

The algorithm was shown to be much faster than kd-trees 
with, however, less accuracy. It can be trapped in a local opti-
mum due to the short-distance propagation. To improve the 
NN search accuracy, the random search step of PatchMatch is 
replaced with a hashing scheme in [29]. Good matches are 
propagated to nearby patches as well as to similar patches that 
were hashed to the same value (i.e., which are similar in 
appearance). The algorithm therefore runs faster and turns 
out to be more accurate. The PatchMatch algorithm has been 
generalized in [30] to find K-NNs instead of one, and to extend 
the search space with transformations (rotations, scaling). 

PATCH PROCESSING ORDER
The missing regions in an image may be, in general, com-
posed of textures and structures. It has been observed [31] 
that it was important to separate these two components and 
start by first recovering the structures. This led to proposing 
patch processing orders that are defined in such a way that 
patches on structures are filled in first. In general, the pro-
cessing order is given by a patch priority measure defined as 
the product of two terms ( ( ) ( ) ( )) .P p C p D px x x=  The first 
term accounts for the amount of known pixels versus 
unknowns in the input patch [this is a so-called confidence 
term ( )]C px  and the second term ( )D px , called data term, 
reflects the presence of some structure in the patch. This 
data term can take several forms (see Table 1). 

A gradient-based data term is proposed in [31], which 
favors patches in which the isophote is perpendicular to the 
front line at pixel .px  The data term is defined as the abso-
lute value of the inner product between the isophote direc-
tion (perpendicular to the gradient )I pxd =  and the normal n px

to the front line as 

( )
| . |

.D p
I np p

x
x xd

a
=

=

(13)

Thanks to this priority term, unknown pixels at the edge of 
an object have higher priority than pixels located on flat image 
areas (see Table 1). 

A sparsity-based data term has been proposed by Xu et al. 
[32] to measure the structure confidence of patches. The struc-
ture confidence is based on the sparseness of nonzero patch 
similarities. Structural patches are assumed to have sparser 

[TABLE 1] PATCH FILLING ORDER.

THE DATA TERM ( )D px  USED FOR FAVORING PATCHES WITH STRONGER 
STRUCTURES CAN TAKE DIFFERENT FORMS. 

1) GRADIENT-BASED DATA TERM [31]: ( ) (| . |) /D p I nx p px xd a= = , WHERE npx  IS THE 
NORMAL TO THE FRONT LINE AT THE POSITION OF THE PIXEL px, AND THE 
PERPENDICULAR TO THE GRADIENT Ipxd =  REPRESENTS THE ISOPHOTE.

Ψpx

Ψpj

npxIpx

Ψpi

S S

U U

⊥

2) SPARSITY-BASED STRUCTURE CONFIDENCE TERM [32]: ( ) / ,ND p Nwp s2x x #=
WHERE Ns  AND N  ARE THE NUMBERS OF VALID AND CANDIDATE PATCHES IN 
THE SEARCH WINDOW.

Ψpx
Ψpy

S

U

Patch with Sparser
Similarities (Valid Candidates
Only Along the Counter)

Patch with Less
Sparse Similarities
(Many Valid
Candidates in 
Yellow Region)

3) TENSOR-BASED PRIORITY [8], [33]: ( ) ( ) ( ) / ( ) ,D p exp1x 1 2
2a a h m m= + - - -^ h

WHERE 0$h  ( 8h = ) AND ,0 1!a 6 @ ( .0 01a = ). WHEN 1 2.m m , FLAT REGION 
IMPLIES LOW PRIORITY ( ( )D px  SMALL). WHEN ( )D px 1 222m m , PRESENCE OF 
STRUCTURE IMPLIES HIGH PRIORITY (TENDS TO BE “1”).

Ψpx

Ψpx

S S

UU

v1, λ

v1, λ

1
v2, λ2

v2, λ2

λ1 λ2Edge Region >> λ1 λ2Flat Region ≈
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nonzero similarities with its neighboring patches compared to 
textural patches. This assumption stems from the observation 
that structures (edges, corners) are, in general, sparsely distrib-
uted in the image. A similarity weight w ,p px j  (i.e., proportional 
to the similarity between the two patches centered on px  and 

)p j  is computed for each pair of patches. A vector w px  is formed 
with the similarity weights between all the pairs ( px , p j ) where 

( , ), ( , ),i j i jj N N1 1 f=  with N  being the number of all candi-
date patches within a search window. The sparsity-based data 
term is defined as 

( ) ,D p
N
Nw p

s
2x x #= (14)

where Ns  and N  are the numbers of valid (all their pixels are 
known) and candidate patches in the search window centered 
on the pixel px .

A large value of the structure sparsity term ( )D px  means 
sparse similarity with neighboring patches—a good confidence 
that the input patch is on some structure—whereas a small 
value indicates that the current input patch is highly predicta-
ble by many candidates, hence is likely to be a textural patch. 
This is illustrated in Table 1, where the patch pxW  has sparser 
similarity than the patch p jW  for which a larger number of 
matching patches can be found in the uniform yellow region. 
This term, compared to the one defined on isophotes, better dis-
tinguishes structural from textural patches. 

A tensor-based data term is proposed in [33] based on Di 
Zenzo’s structure tensor [4] computed on the color components 
(R,G,B) as .J I Ic cT

c
m

1
d d=

=
/  As explained above, the eigenvec-

tors and eigenvalues of the structure tensor give an indication 
of the local geometry. Based on the discrepancy of the eigenval-
ues, the degree of anisotropy of a local region can be evaluated. 
The tensor-based data term is therefore written as  

( ) ( )
( )

,D p 1 exp
1 2

2x a a
m m

h
= + - -

-
c m (15)

where 0$h  (e.g., 8h = ) and ,0 1!a 6 @ (e.g., .0 01a = ). On flat 
regions ( ),1 2.m m  no direction is favored for the propagation 
(isotropic filling order). When ,1 222m m  which indicates the 
presence of a structure, the data term ( )D px  tends to be “1.” 

The patch processing order has a strong impact on the qual-
ity of the inpainted image: giving a higher priority to structural 
patches leads to a better recovery of object boundaries, avoiding, 
e.g., unconnected boundaries in the inpainted image, as shown 
in Figure 6. Studies of vision psychology show that human 
observers are quite annoyed by unconnected edges [34]. 

GLOBAL IMAGE COHERENCE VIA CONSTRAINED
SEARCH OR GLOBAL OPTIMIZATION
The approaches in [3], [24], and [31] progress patch per patch in a 
greedy fashion; for this reason, they do not ensure a global image 
coherence. The visual quality of the inpainted image can be 
improved by maximizing similarity between the synthesized patch 
and original patches in the known part of the image. This can be 
achieved in pixel-based synthesis approaches by searching for 

candidate pixels in the neighborhood of those already used to 
inpaint the neighbors of the input pixel to be estimated [19]. 

The authors in [35] constrain the search for candidate 
patches by using a global coherence measure ()Coh  defined as 

( ) { ( , )} .min dCoh p
U

p S
p
U

p
U

SSDx
j

x jW W W=
!

(16)

This coherence measure is used to favor patches giving a syn-
thesized part p

U
xW  most similar to the pixels p

U
jW  of the known 

part S  of the image. Among the best candidate patches, the 
algorithm keeps the one that minimizes the above coherence 
measure. This prevents from pasting in the unknown region a 
texture that would be too different from original textures. This 
measure therefore limits texture garbage. Examples of texture 
garbage are visible in Figure 6. 

Spatial coherence can also be naturally ensured via a global 
optimization of MRF energy functions over the entire image. 
Patch, pixel locations, or offsets are optimized in the MRF by 
using belief propagation [36] or graph cuts [37]. The shift-map 
method [37] indeed treats inpainting as a global optimization on 
the entire image. The method, inspired from the patch transform 
described in [38], computes a vector field (called shift-map), 
which maps each pixel in the hole to be filled in to a pixel in the 
known part of the image. The optimal shift-map is computed as a 
graph labeling optimization minimizing a global cost function. A 
node in the graph corresponds to a pixel in the output image 
labeled by a shift (translational displacement). 

The authors in [39] match similar patches in the known part 
of the image and compute patch offsets. They observed that a 
majority of patches have similar offsets, and the peaks in the off-
set distribution correspond to dominant offsets. A stack of 
images is formed with shifted versions of the input image 
according to these dominant offsets. The shifted images are 
then combined by optimizing a global MRF energy function. 
These methods produce visually pleasing and coherent 
inpainted images, in particular when the hole to be filled in has 
homogeneous texture and few structures. 

PATCH STITCHING WITH BLENDING AND QUILTING
Filling the unknown part of the input patch may lead to 
stitching together pieces of texture that are not consistent in 
terms of color or contrast, or which may contain structures 
that do not align. Color bleeding or boundary artifacts may 
therefore be visible in a boundary or transition region. To 
reduce the boundary effect, the pieces of texture must be 
stitched together along an optimal seam that will be the best 
boundary between the two regions. 

A quilting method is introduced in [40], which consists of 
finding an optimal path (called a seam) cutting the overlapped 
regions O , as illustrated in Figure 7. The seam, which is an 
eight-connected path of pixels in the overlap region, goes from  
top to bottom for a vertical seam and from left to right for an 
horizontal seam. The path determines which patch contributes to 
pixels at different positions in the overlap region. A vertical 
(respectively, horizontal) seam contains only one pixel per row 
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(respectively, column) in the overlap region. An energy function 
( , )e i j  is defined to evaluate the contrast of the current pixel with 

respect to its neighbors. A gradient-based energy is commonly 
used. The energy of a seam s  is given by ( ) ( , )eE s i j

( , )i j O
=

!
/ ,

where ( , )i j  are the coordinates of a pixel of the seam s  inside 

the overlap region O . The optimal seam s*  having the mini-
mum energy 

( )arg mins E s*
s

= (17)

is searched by using Dijkstra’s shortest path algorithm, dynamic 
programming [40], or by using graph cuts [23], [41]. 

Dynamic programming allows solving this problem effi-
ciently by computing the cumulative minimum energy M  for 
all possible connected seams as 

( , ) ( , ) ( ( , ),

( , ), ( , )) .

minM i j e i j M i j

M i j M i j

1 1

1 1 1

= + - -

- - + (18)

For a vertical seam, we look for the minimum value on the last 
row and backtrack from this minimum to find the optimal ver-
tical path. The quilting approach is limited by the number of 
possible orientations at each pixel. For instance, for the case of 
a vertical seam, only three directions (bottom-right, bottom, 
and bottom-left) can be used to build the seam path. In 

Unconnected Edges

Unconnected Edges

Texture Garbage

(a) (b)

(c) (d)

[FIG6] (a)–(d) Typical artifacts of examplar-based methods: unconnected boundaries and texture garbage. The bungee jumper has been 
inpainted with the method in [31] and the lion image with [22]. [(a) Original bungee jumper image courtesy of M. Bertalmio. (b) and (d) 
Courtesy of Christine Guillemot and Olivier Le Meur. (c) Courtesy of [39].]

[FIG7] The quilting texture. Two texture chunks are patched 
together. An optimal seam is computed to cut the overlap 
region. On the left side of the seam, texture from block B1 is 
copied into the final texture. On the right side, pixels belonging 
to texture B2 are copied. (Figure adapted from [40] and used 
with permission from the Massachusetts Institute of Technology.)

B1 B1 B1B2 B2

Overlap Area Optimal Seam

B2
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addition, the quilting method is greedy since the seams are 
defined either in left-to-right or top-to-bottom order. 

To cope with these limitations, a graph-cut method can be 
used to find the optimal seam. A graph cuts consist of first 
constructing a specialized graph for the energy function to be 
minimized such that the minimum cut on the graph, com-
puted by max-flow algorithms, minimizes the energy 
[42],  [43]. Graph cuts have been used for a wide variety of 
vision problems, particularly in [44] to seamlessly combine 
and stitch different textures together. 

Blending (feathering, pyramid blending, alpha blending, or 
Poisson blending [45]) and image melding [46] can also be 
used to seamlessly merge the new patch. Blending aims at 
handling color inconsistency by smoothly interpolating the 
error in the transition region. Image melding [46] synthesizes 
the texture in the transition region by transforming one patch 
(or image) to be stitched into the other. 

EMBEDDING NEAREST NEIGHBORS
The first examplar-based methods were estimating the unknown 
part of the input patch by copying pixels of the single best match 
among possible candidates. A better estimate of the unknown pix-
els can be obtained by computing a linear combination of several 
candidate patches, e.g., of the K-NN, as illustrated in Figure 8. This 
places the inpainting problem in a neighbor embedding frame-
work. Different approaches can be used to compute the weights of 
the linear combination of the K-NN. The authors in [47] proposed 
a nonlocal means approach. The unknown pixels of the patch to be 
completed are inferred by the nonlocal means of several candidate 
patches instead of taking the single best match. The weights of the 
linear combination are computed using a similarity kernel as 

, ( , ), ,expw
h

i j k N1jk
p
S

p
S

k k
2
2

x j
f

W W
= -

-
= =e o (19)

where N  is the number of all candidate patches in the search 
window. The parameter h  acts as a filtering parameter. This 
kernel gives higher weights to patches that are more similar to 
the known samples of the input patch. This approach is 
inspired from the nonlocal means (NLM) algorithm used for 
denoising in [48] and for texture synthesis in [3]. 

The weights can also be computed using least square approx-
imations of the known pixels of the input patch under various 
constraints. A constraint that the weights sum to one leads to 
placing the problem in the locally linear embedding (LLE) 
framework [49]. The search for the weights of the linear com-
bination of the K  best matching patches, centered on pixels p j

located at positions ( , ),i j k K1j k k f= = , is expressed as 

 , ( , ), .

argmin w

w i j k K1 1s.t. j

,w k K p
S

k
k

K

p
S

k
k

K

k k

1

2

2

k jx

f

W W-

= = =

f= /

/ (20)

The nonnegativity constraint places the problem in the non-
negative matrix factorization [50] framework, which leads to 

formulating the weight computation as the constrained 
minimization

, ( , ), .

argmin w

w i j k K0 1s.t. j

,w k N p
S

k
k

K

p
S

k k k

1

2

2

k x j

f$

W W-

= =

f= /
(21)

Once the weights wk  are computed, they are used to linearly 
combine the pixels of the candidates patches ,p

U
jW  which are 

located at the same position as the unknown pixels of the input 
patch (i.e., ) .w

k
K

p
U

k p
U

x jW W=t /

MULTISCALE REFINEMENT
The search for similar patches can be improved by introducing as a 
priori a rough estimate of the inpainted values using a multiscale 
approach. The missing regions are iteratively approximated using 
some guidance from coarse to fine levels [24]. The use of a multi-
scale approach offers a number of key advantages. The inpainting 
of a coarse version of the input picture is much easier than per-
forming the inpainting at the full resolution. It is easier to retrieve 
the main and dominant structures since the local singularities in 
terms of orientation as well as luminance are less numerous. The 
results are moreover less sensitive to noise. Drori et al. [24] used, 
for instance, a rough estimate of the inpainted values to improve 
the K -NN search method. The drawback of multiscale refinement, 
as mentioned in [36], is that if an error occurs at a coarse scale, 
inpainting errors can spread across the finer scale. The authors in 
[22] perform the inpainting on a coarse resolution of the input pic-
ture, and then use a single-image superresolution method to 
retrieve the high-frequency details of the inpainted areas. 

INTRODUCING SPARSITY PRIORS
The inpainting problem can also be solved assuming image 
sparsity priors. In this case, the image I  is assumed to be a 
sparse-land signal [51], meaning that the image I  is sparse in a 
given basis. The basis can be formed by predefined elementary 
waveforms (also called atoms) which are stored in a dictionary 
matrix A . The dictionary matrix A  can also be learned using 
dictionary-learning methods. An image I  is said to be k-sparse 
in a given basis stored in the dictionary matrix A , if it can be 
represented by a vector v  having only k  nonzero elements (i.e., 
its l0  norm is || | | kv 0 = ) verifying I Av= . The sparsity of a 
signal depends on the considered basis, i.e., of the matrix A .

Considering the degraded image F MI= , the inpainting 
problem is therefore formulated as searching for the sparse 
representation vector v  of the image F , by solving 

 | | | |min v 0

such that

.F MAv= (22)

Many solutions exist for searching for the sparse vector v ,
with the most popular ones belonging to the family of greedy 
matching pursuit algorithms. A good overview of these match-
ing pursuit algorithms can be found in [51, Ch. 3]. 
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The above inverse problem is usually solved patch-per-
patch rather than directly on the entire image F . For each 
patch pxW  of the image F  formed by a known part p

S
xW  and an 

unknown part p
U

xW , one searches for the sparse vector v px ,
which best approximates the known part of the input patch 

p
S

xW  as A vp
S S

px xW =  where AS  is a matrix obtained by masking 
the rows of the matrix A  corresponding to the positions of the 
unknown pixels p

U
xW  in pxW , as shown in Figure 9. 

The same sparse linear combination of atoms is then used 
to approximate the unknown pixels p

U
xW , as A vU

p
U

px xW =t , tak-
ing this time the masked samples of the atoms (these samples 
correspond to the positions of the unknown pixels). This gen-
eral formulation is also used for other image processing prob-
lems like denoising and superresolution. The sparse 
representation area has recently evolved into the more general 
compressive sampling framework that also naturally applies to 
image recovery problems [52]. 

Variants have been introduced exploiting sparsity priors. 
Assuming that images are composed of locally uniform regions 
separated by edges, the author in [53] uses adaptive sparse rep-
resentations. The algorithm performs a nonlinear approxima-
tion with adaptively determined sparsity constraints. Hybrid 
sparse representations enforcing both local and nonlocal spar-
sity are considered in [54]. The nonlocal sparsity is defined as 
the sparsity of a three-dimensional (3-D) data array formed by 
the input patch and its K -NN in the known part of the image, 
whereas the local sparsity is defined as the sparsity of the 2-D 

patch, the sparsity constraints being enforced by hard-thresh-
olding in a predefined waveform basis (DCT, fast Fourier trans-
form). Local and nonlocal sparse representations are then 
combined via Bayesian model averaging [54] to satisfy both con-
straints of local smoothness and nonlocal similarity, with a con-
straint of fidelity to the known samples. 

Patch-based methods show that texture patches can be rel-
evant dictionary elements. Therefore, instead of using pre-
defined waveforms, a linear combination of candidate patches 
regularized by a sparseness prior on the weighting coefficients 
can be used for inferring the unknown pixels [32]. Sparsity is 
also used in [32] for determining structural patches to be pro-
cessed first, as explained in the section “Patch Processing 
Order.” The patch sparse representation is moreover con-
strained by local patch consistency. 

HYBRID METHODS SEPARATING
STRUCTURE FROM TEXTURE
Diffusion methods work well for small and sparsely distributed 
gaps. They are also appropriate for piecewise smooth images 
and for propagating strong structures. But they are unable to 
restore texture. On the contrary, examplar-based methods 
work amazingly well in textured regions with homogeneous or 
regular patterns. Nevertheless, they are not so well suited for 
preserving edges or structures, or for images with many small 
distributed holes. 

Yet, natural images contain composite structures and tex-
tures. The structures constitute primal sketches of an image 
(e.g., edges, corners) and textures are regions with homoge-
nous patterns or feature statistics. To handle composite tex-
tures and structures, it is therefore natural to combine 
different types of approaches. Two main strategies have been 
considered. The first strategy consists in first separating the 
image components (texture and structure), and inpainting 
them separately with the most suitable method (e.g., diffusion 
or examplar-based). The two inpainted components are then 
added together as in [55],  [56]. A second strategy consists in 
combining different approaches in one unique energy function 
using a variational formulation [21], [36]. 

STRUCTURE/TEXTURE SEPARATION
Structure can be identified in a supervised way, as in [57], 
where the user specifies curves corresponding to important 
missing structures (e.g., object boundaries) in the unknown 
region. A structure propagation is then performed by copying 
patches located in the direction of these curves in the known 
region. The remaining unknown pixels are in a third step esti-
mated using a texture synthesis method as in [19]. 

Texture and structure can also be separated in an auto-
matic manner, using, for example, a variational method as in 
[55], where the authors decompose the image as a sum of two 
functions, one being of BV representing the image structure, 
and a second one capturing the texture. The structure image 
is a sketchy approximation of the input image, containing only 
edges separating smooth regions. These piecewise smooth 

K-NN Search
Within
a Window

K-NN

Weight
Computation

(LLE, NMF, ...)

Linear
Combination

w1 w2 wK

[FIG8] The estimation of unknown pixels with neighbor 
embedding. The first step consists in searching for the K-NN
of the input patch. The algorithm then searches for the weights 
of the linear combination of these K-NN patches that best 
approximates the known pixels of the input patch to be 
completed. The weights computation can be done using 
different methods (e.g., NLM, LLE, and NMF).
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images are also referred to as cartoon 
images in [55]. In [55], the texture 
layer is inpainted using the texture 
synthesis method of [3] while the 
geometric layer is inpainted using the 
diffusion method of [2], and the two 
inpainted components are added 
together to produce the final result. 

The authors in [56] proposed a 
method based on sparse representa-
tions for decomposing the image into 
a texture and a geometry component, 
called layers. Using two dictionaries 
of different characteristics A g  and At

, the image is decomposed into struc-
tural and textural components as 
I A v A vg g t t= + . The method is called 
morphological component analysis 
(MCA). The two dictionaries are 
mutually incoherent, i.e., each dic-
tionary gives a sparse representation 
for one component while yielding a nonsparse representation 
for the other component. Both dictionaries are grouped into a 
big dictionary which is then used by a basis pursuit algorithm 
to find the sparse representation of each layer. The authors in 
[58] propose an algorithm based on this sparsity seeking 
image separation into two components. Instead of a separate 
processing of the two components as in [55], the sparse vec-
tors for the two components are obtained by minimizing 

 | | | | | | | |min v vg p t p+

such that

( ),F M A v A vg g t t= + (23)

where || . | | p  denotes the L p  norm, with p  often equal to zero 
or one. To solve this minimization problem, the constraint is 
introduced as a penalization term. In [58], a TV penalization 
term is added to regularize the sparse approximation of the 
image geometry. This approach can fill in a region with com-
posite textures and structures. It however introduces blur when 
the missing region is large. 

COMBINING DIFFERENT METHODS 
VIA ONE ENERGY TERM
Methods best adapted to different components of the image can 
also be combined by introducing several energy terms in one 
unique energy function which can then be globally optimized, 
without prior separation of structure from texture. In [36], an 
energy term comprising a texture synthesis term and a term 
measuring how patches to be stitched together agree in the 
overlap area is minimized using belief propagation. The authors 
in [21] combine energy terms related to texture synthesis, 
coherence, and geometry (by minimizing the TV of the struc-
ture of the image) as proposed in [59], into one single energy 
functional. A correspondence map between pixels to be filled in 

and pixels in the known part of the image, is then searched to 
minimize this energy functional which is the sum of three 
energy measures (self-similarity, coherence, and diffusion). The 
self-similarity energy term, as in texture synthesis, computes 
the similarity between the patch centered on the pixel to be 
filled in and the patch centered on the candidate pixel in the 
known part of the image. The diffusion term is the energy of the 
discrete Laplacian of the inpainted part of the image for a given 
correspondence map. The spatial coherence term measures the 
similarity between patches corresponding to neighboring pixels. 

GLOBAL METHODS
In ill-posed image processing problems such as inpainting, image 
priors play a very critical role. Statistical and structural priors 
capture and exploit stationarity and similarity in a local neighbor-
hood or throughout the entire image. In patch-based methods, 
the missing pixels are patch-wise computed in terms of their 
neighbors, whereas in diffusion pixel-based methods, they are 
filled in by propagating neighboring pixels in a way that favors 
good edge continuation. Rather than searching to capture local 
relationships or dependencies, one can instead capture the global 
structure of the input data, using models which reproduce key 
statistical properties of images or of textures of interest. These 
models include probabilistic models of coefficients in transformed 
domains [60], sparsity models (see the section “Introducing Spar-
sity Priors”) or low-rank models. 

When using sparse priors, the input texture or image is 
assumed to have sparse representations in a certain basis. Forc-
ing sparse priors on the recovered image, the missing region is 
synthesized as a sparse linear combination of elements from an 
overcomplete dictionary. Similarly, given the spatial coherence 
and self-similarity which characterize natural images, the high-
dimensional input textures or images lie in a subspace of 
reduced dimension. This low-rank image model has led to a 

As

AU

Dictionary
Matrix A
Formed by
Vectorized
Waveforms
(DCT, Wavelets)Ψpx

Ψpx

S

U

Ψ̂px

U = νpx
AU

Ψpx

S =νpx
νpx

ASs⋅t⋅⎢⎢ ⎢⎢
0

min

[FIG9] Estimation of unknown pixels with sparse priors in transform domain. A
dictionary matrix is constructed from waveforms (DCT, wavelets). The grey part of the 
columns of the dictionary represents the masked rows corresponding to the position of 
the unknown pixels in the input patch.
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class of methods based on low-rank matrix and tensor comple-
tion, which aim at representing this subspace characterizing 
the “global” information of the image. 

Let I  be the input image to be completed. Let us assume that 
the image I  is of dimension P Q#  in which each pixel in position 

( , )x yx =  carries three color components (i.e., I RP Q 3! # # ). 
Each image color channel of I  forms a 2-D matrix Ic  with 
known and unknown entries. The matrix completion problem is 
to search for a low-rank approximation of the matrix Ic , given 
the known subset of its entries. This problem is formulated as 

( ) ,min r
2
1 s.t. rankI I Ic c c2

I Sc #-t tt (24)

where S  is the set of known pixels in the image (known 
entries in the image), and the rank is the number of nonvan-
ishing singular values of the matrix. This optimization is not 
convex. The problem can however be reformulated as a con-
vex programming problem by minimizing the sum of the 
singular values, i.e., the nuclear (or trace) norm instead of 
the rank [61]. The problem is in this case of finding the 
matrix with the minimum nuclear norm agreeing with the 
observed entries. 

Given that a tensor is simply a generalization of a matrix to 
higher dimensions, the low-rank matrix completion problem 
has been naturally extended to low-rank tensor completion. The 
order of a tensor is the number of dimensions also known as 
ways or modes. The three color component input image I  can 
therefore be seen as a three-order tensor to be completed. The 
problem can be formulated in a similar manner as in (24), and 
solved using the notion of trace norm for tensors as in [62]. 

Matrix and tensor completion methods work well for 
inpainting when the missing areas are not too large or when the 
rank of the original image is quite low. It is hence suitable for 
restoring images from scratches, or for removing overlayed text, 
but not so well suited for applications such as disocclusion, 
object removal or loss concealment. 

APPLICATIONS
The problem of inpainting is encountered in various image pro-
cessing applications: image restoration, editing (e.g., object 
removal), disocclusion in image-based rendering, interpolation, 
loss concealment, texture synthesis or image resizing (e.g., 
enlargement). Inpainting has also been considered in the con-
text of lossy image compression: blocks within the image that 
can be recovered by inpainting are not transmitted. The goal 

here is not to assess or benchmark in terms of inpainting 
results the numerous methods which exist, nor to give an 
exhausive list of all potential applications. It is instead to illus-
trate the main applications with some examples of algorithms, 
showing the limited applicability of some of them for particular 
use cases. A taxonomy of the methods is given in Table 2. Links 
to publicly available software code implementing some of the 
above methods are given in Table 3. 

IMAGE RESTORATION
The image restoration problem is concerned with recovering 
an original image from various forms of degradations. The ori-
gin of the degradations to deal with depends on the applica-
tion: it can be text overlay or scratches in digital photography, 
in digital cinema, or in pictures taken of ancient paintings 
[63]. It can also be degradations that result from the capturing 
process like specular reflections, spots, and cracks in medical 
images (e.g., in endoscopic images [64]). Another application 
area is fingerprint restoration in automatic fingerprint identi-
fication systems [65]. 

In the restoration problem, the missing region is generally not 
too large, hence, local diffusion and patch-based or global methods 
give satisfactory results. Figure 10 illustrates the problem and 
gives inpainting results obtained with methods of different types: 
anisotropic diffusion [11], examplar-based inpainting, the hybrid 
method in [21], which performs a global minimization of an 
energy term, and the tensor completion method [62]. The exam-
plar-based method used here is a simple approach computing the 
patch processing order as in [31], but using similarity weights 
[47] to combine candidate patches rather than inferring the 
unknown pixels from the single best match. Given the small 
gaps to be filled in, most methods (diffusion, examplar, a fortiori 
combinations of the two, as well as more global techniques) 
give satisfactory results. 

OBJECT REMOVAL
Another natural application of inpainting is image editing in 
which the user removes objects, hence, uncovering unkown 
parts of the image foreground. This application is well illus-
trated by the images of Figure 11 in which one foreground 
object has been removed, leaving a hole to be filled. Figure 11 
shows inpainting results with methods of different categories. 
Figure 11(b) illustrates the limitations of diffusion methods 
when the gap to be filled in is large. Diffusion introduces 
smoothing and blurring artifacts in the synthesized region. 

[TABLE 2] A TAXONOMY OF INPAINTING METHODS.

FEATURES PDE-BASED DIFFUSION EXAMPLAR-BASED INPAINTING HYBRID METHODS GLOBAL 
PRIORS SMOOTHNESS SELF-SIMILARITY, SPARSITY SMOOTHNESS + SIMILARITY/SPARSITY STATISTICAL, LOW RANK

OPTIMIZATION GREEDY GREEDY OR GLOBAL GREEDY OR GLOBAL GLOBAL

SENSITIVITY TO SETTING LOW HIGH HIGH HIGH

HOLES SMALL MEDIUM TO BIG MEDIUM TO BIG SMALL TO MEDIUM 

APPLICATIONS RESTORATION RESTORATION, EDITING, RESTORATION, EDITING RESTORATION

DISOCCLUSION, CONCEALMENT DISOCCLUSION, CONCEALMENT
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To recover the texture of the hole, examplar-based methods 
[66], methods using sparse representations [32], or solutions 
combining structure diffusion and examplar-based texture 
recovery as, e.g., [21] are more appropriate. However, examplar-
based techniques, although conceptually very simple, work 
strikingly well for these type of applications. The method used 
in Figure 11(c) uses the same patch processing order as in [31] 
but performs a linear combination of best matching patches 
with weights computed using the constrained least squares 
approximation given in (20). The method in [39], based on sta-
tistics of patch offsets, also gives very good results in this case. 
However, global methods based on low-rank approximation or 
tensor-based completion [62] are, in general, not suitable for 
this type of application, except if the hole is small or the input 
image is low rank. 

DISOCCLUSION
Inpainting methods are also needed in 3DTV rendering on ste-
reoscopic or autostereocopic displays, as well as in the context 
of free viewpoint rendering of a 3-D scene. For the user to navi-
gate in the 3-D scene, virtual views that may be distant from 
original ones must be synthesized. The intermediate views (or 
virtual views) are usually computed with IBR algorithms that 
use the original images, scene geometry information (depth 

maps), and camera parameters. A 3-D point on the recon-
structed geometry is projected onto the image plane of a virtual 
camera. The color of the 3-D point is first computed by inverse 
projection of the original image into the 3-D space. During this 
projection process, some parts of the 3-D scene may be visible 
in the virtual view but not in the original views: they may be 

(a) (b) (c)

(d) (e) (f)

[FIG10] Image restoration. (a) The original image (courtesy of [62]), (b) mask, (c) inpainting results with anisotropic diffusion, (d) 
examplar-based method with similarity weights (NLM),  (e) with the hybrid method (courtesy of [21]), and (f) with the tensor 
completion technique (courtesy of [62]). 

[TABLE 3] LINKS TO PUBLICLY AVAILABLE CODE.

METHODS URL
PDE-BASED DIFFUSION FAST MARCHING DIFFUSION [10] (IN OPENCV):

http://docs.opencv.org/modules/photo/doc/
inpainting.html

EXAMPLAR BASED THIRD PARTY CODE OF [31]: http://www.csee.wvu.
edu/~xinl/source.html 
http://daviddoria.com/?p=126
[22]:http://people.irisa.fr/Olivier.Le_Meur/
publi/2013_TIP/index.html

SPARSE METHODS [51]: http://www.cs.technion.ac.il/~elad/software/ 
ADAPTIVE [53]: http://eeweb.poly.edu/~onur/
source.html#recover_code 
LOCAL/NONLOCAL [54]: http://www.csee.wvu.
edu/~xinl/demo/inpainting.htmL
TEXTURE/STRUCTURE SEPARATION (MCA) [56]: 
http://jstarck.free.fr/mca.html 

GLOBAL/HYBRID
METHODS

TENSOR COMPLETION [62]: http://pages.cs.wisc.
edu/~ji-liu/
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hidden by foreground objects. When synthesizing a virtual view, 
these parts become disoccluded, resulting in pixels with 
unknown color. These pixels need to be estimated using inpaint-
ing techniques. 

Figure 12 illustrates this application by showing in (a) a refer-
ence view (view four of the multiview sequence called ballet (see 
[67]) and in (c) the result of the projection on a virtual viewpoint 
corresponding to a displacement to the right of the camera. Dis-
occluded areas due to the projection appear and have to be filled 
in. When the camera is moving to the right, missing areas (e.g., 
disocclusion areas) appear on the right side of foreground objects. 
Therefore, to prevent the propagation of foreground patches into 
the background, the filling has to be performed from the right to 

the left side. Otherwise for a leftward shift of the camera, the 
missing areas should be filled in from the left to the right side. 
Figure 12(c) shows the inpainted result using the examplar-based 
method in [66] adapted so that the candidate patches are 
searched in a window shifted according to the camera displace-
ment (i.e., shifted to the right for a rightward camera shift). 

The gaps to be filled in do not result from explicit object 
removal as in an image editing application. However, the diffi-
culties and characteristics, as far as the inpainting algorithm is 
concerned, are very similar for both applications. In this appli-
cation, the inpainting can nevertheless also benefit from taking 
into account the depth information in addition to the three 
color components, e.g., for finding best matching patches. 

(a) (b) (c)

(d) (e) (f)

[FIG11] Object removal application (a) mask and inpainting results with methods from different categories, (b) anisotropic diffusion 
(courtesy of [11]), (c) examplar-based with LLE (courtesy of [66]), (d) patch sparse representation (courtesy of [32]), (e) hybrid with one 
global energy minimization (courtesy of [21]), and (f) patch offsets (courtesy of [39]). [(a) courtesy of www.magazinehive.com.]

(a) (b) (c)

[FIG12] The view synthesis for the sequence ballet. (a) The known reference view projected into virtual viewpoints. (b) Projection of 
the reference view on a virtual viewpoint with rightward shift of the camera (white areas are disoccluded areas). (c) The inpainted 
version of the projected image. (Images used courtesy of [67].)
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LOSS CONCEALMENT
Image and video transmission over best-effort packet-based net-
works suffers from packet losses that result in missing areas in 
the decoded images. The loss concealment is a postprocessing 
performed after decoding that searches to recover lost parts of 
an image by exploiting dependencies within the image or 
between adjacent images in a video sequence. The positions of 
the missing areas depend on the data packetization scheme. 
Transmission schemes, such as the flexible macroblock order-
ing, avoiding placing adjacent blocks of pixels in the same 
packet, have been specified in the H.264 standard, to ease the 
concealment process in case of packet losses. 

In transmission and decoding systems that are practically 
used today, the loss concealment is usually performed using a 
simple copy from previous frames that have been correctly 
received or using simple spatiotemporal interpolation. However, 
inpainting techniques are useful tools in this context as well, 
although complexity issues become quite crucial in this con-
text, where the inpainting must be done in real time. This appli-
cation is illustrated in Figure 13, where the inpainting is done 
using the hybrid local/nonlocal sparse representation method. 
As far as the inpainting methods are concerned, the problem is 
similar to the object removal application, therefore, in this case 
as well, patch-based methods using examplars or sparse priors, 
or hybrid methods combining diffusion and examplar-based 
techniques give very good results. 

CONCLUSIONS
Image inpainting has received a lot of attention in the past few 
years. Numerous and different types of approaches have been 
proposed with varying applicability in restoration, object 
removal, disocclusion, or in texture synthesis. These algo-
rithms have, however, limited direct applicability for video 
inpainting, which remains an open problem, despite prelimi-
nary solutions making assumptions in terms of moving 
objects or camera motion. Tracking moving objects in a video 
(the ones to be removed or others impacted by missing data 
due to losses or occlusions) in an unsupervised manner 
remains a difficult problem. 

The quality assessment of inpainted images is another open 
and difficult issue, as no quantitative metrics exists. Fidelity met-
rics cannot be used given that, for most inpainting applications, 
the ground truth is in general unknown. One has to rely on a sub-
jective assessment to evaluate whether the inpainted images are 
visually pleasing and physically plausible. 
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O
n 7 March 2013, the Mov-
ing Picture Experts Group 
Licensing Association 
(MPEG LA) and Google 
announced that they have 

entered into an agreement granting 
Google a license to techniques, if the pat-
ents in MPEG LA might be essential to 
VP8. Under this agreement, hardware and 
software companies are free to use the 
VP8 technology when developing their 
own products. Considering that it is now 
common to find patent disputes in head-
line news, the patent issues related to 
video coding standards are no exception. 
In this article, we report on the recent 
developments in royalty-free codec stan-
dardization in MPEG, particularly Inter-
net video coding (IVC), Web video coding 
(WVC), and video coding for browser, by 
reviewing the history of royalty-free stan-
dards in MPEG and the relationship 
between standards and patents.

MPEG STANDARDS AND 
ISO/IEC PATENT POLICY
MPEG has been developing video coding 
standards under the International Orga-
nization for Standardization (ISO) and 
the International Electrotechnical Com-
mission (IEC) for the past 20 years, with 
MPEG-2 and MPEG-4 being very suc-
cessful examples. Like other ISO/IEC 
standards, MPEG standardization is not 
directly related to patents and licensing 
issues. Standardization groups do not 
have any direct responsibility for patent 
issues, but they provide guidance with 
respect to patent policy to deal with 
intellectual property rights (IPR) issues. 
All patent issues including standardized 
technology should be managed by 

outside organizations (e.g., the World 
Intellectual Property Organization). ISO/
IEC standards can be categorized into 
three types with regard to patent licens-
ing, depending on the patent holders’ 
licensing policy [1]; see Figure 1.

If a patent holder decides on Type-3, 
the technology related to the patent 
would not be included in a standards 
specification. So, most patent holders in 
ISO/IEC standardization choose Type-1 
or Type-2. Joint Photographic Experts 
Group (JPEG) is a typical example of a 
Type-1 standard, whereas MPEG is a 
Type-2 standard.

While Type-1 standards can be used 
royalty free in principle, they can be 
vulnerable to an attack by submarine 
patents. Submarine patents indicate the 
patents that are generally hidden or not 
considered during standard develop-
ment. Patent suits on JPEG are a well-
known example of such a case [2]. 

Type-2 standards are considered a 
useful compromise between patent hold-
ers and licensees. The guaranteed advan-
tage of a Type-2 standard is to provide 
IPR with fair, reasonable, and non-
discriminatory conditions and pricing to 
market. To maximize the merit of Type-2 
standards, managing licenses under a 
patent pool is a common approach.

LICENSING STANDARD PATENTS
A patent pool is a consortium of at least 
two companies agreeing to cross-license 
patents related to a particular technology. 
The creation of a patent pool can save 
both owners and licensees time and 
money. The patent pool provides a service 
that brings all parties together by enabling 
one-stop shopping. MPEG LA is a well-
known patent pool that manages patents 
of many MPEG standards, including 
MPEG-2 and MPEG-4 [3].

The formation of a licensing patent 
pool for standards is a desirable solution to 
licensees who want to use the standards. 
However, some patent holders may want 
to pursue royalties outside of the patent 
pool, which will make it more challenging 
for standard users to license the technolo-
gies. AT&T is one example of a nonpartici-
pating patent holder in MPEG-LA, who is 
believed to have several essential MPEG-4 
video compression patents [4]. In such a 
case, licensees need to enter additional 
licensing contracts with patent holders 
who are not part of the pool. This situa-
tion is not favorable to licensees since 
there is a possibility that the licensing cost 
for the entire standard may increase.  

The licensing business of standard pat-
ents in MPEG is not expected to be as 
lucrative as it used to be. While the size of 
the digital TV market has increased sub-
stantially, the number of patents has 
increased exponentially [5]. According to 
the analysis of issued U.S. patents includ-
ing terms “video coding” or “video com-
pression” on United States Patent and 
Trademark Office (USPTO) by following the 
same procedure used in [5], the number 
of related patents issued in 2012 is similar 
to that issued in the entire 1990s decade 
(Figure 2). The business model that enables 
earning a reasonable profit from patented 
technology should be reconsidered.
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Additionally, patent holders within a
patent pool are concerned about the 
emergence of several competing codecs 
targeting the same market. Today, the 
competition in the video codec market 
is fierce: there are the conventional 
standard codecs in MPEG (e.g., MPEG-
1, MPEG-2, and MPEG-4), along with 
newly introduced standard codecs [e.g., 
MPEG-H High-Efficiency Video Coding 
(HEVC)], and codecs outside MPEG 
(e.g., VC-1, VP8). 

During the development of MPEG-2, 
a patent pool was the right approach 
because MPEG-2 was the only standard 
available at the time, with many different 
patent holders. A significant increase in 
the number of patents in a patent pool 
would result in a substantial decrease of 
return on investment per patent, which 
can be observed in many video coding 
standards today. Some patent holders 
have tried to overcome this situation by 
setting up an independent patent licens-
ing program without joining a patent 
pool [6]. The appearance of several com-
peting codecs makes the problem even 

worse by lowering the royalty for any 
given codec. Most patent holders are not 
nonpracticing entities but manufactur-
ers, which means that the dominance of 
a standard in the market is more impor-
tant than the royalty from standard.  
From this perspective, royalty-free video 
coding standards are becoming a reason-
able alternative to be more competitive 
than royalty-bearing standards.

INDUSTRY DEMAND FOR 
ROYALTY-FREE CODECS
In several media market segments, there 
are requests for royalty-free video coding 
standards. Standard development organi-
zations (SDOs) have begun to consider 
developing standards to address these 
royalty-free requirements. For example, 
the World Wide Web Consortium (W3C), 
a well-known royalty-free standardization 
group, is trying to include a codec specifi-
cation for the upcoming HTML5 for the 
first time. Considering that W3C has 
made royalty-free standards, a royalty-free 
technology would be the key criteria of 
the codec specification for HTML5.

At the same time, MPEG-1 and 
MPEG-2 are becoming royalty-free codecs 
as the essential patents on the prevalent 
MPEG-1 and MPEG-2 have been or are 
expiring. Nevertheless, the market 
demand for a royalty-free coding standard 
is not currently fulfilled because the cod-
ing performance of these and other avail-
able royalty-free codecs is not yet 
satisfactory. Considering the fact that the 
compression efficiency of a new coding 
standard is usually twice better than the 
previous one, it is natural that the 
expected coding performance of a new 
royalty-free codec should be comparable 
to other current coding standards.

Another option is to find a proper 
royalty-free codec outside of standards. 
In 2010, Google released the VP8 codec 
software under a Berkeley Software Dis-
tribution (BSD)-like license and the VP8 
bitstream format specification under an 
irrevocable free patent license [7]. The 
key application of VP8 are Internet-based 
technologies [such as HyperText Markup 
Language (HTML), Hypertext Transfer 
Protocol (HTTP), Transmission Control 
Protocol (TCP), and Internet Protocol 
(IP)], and Google provides VP8 to be 
open and freely implementable based on 
open-source policy. VP8 is currently 
being proposed to several SDOs to spread 
the codec widely. In fact, Google submit-
ted a document describing the bitstream 
specification for its VP8 video compres-
sion algorithm for publication to the 
Internet Engineering Task Force (IETF) 
[8]. Furthermore, Google is currently 
participating in the development of roy-
alty-free codec standardization in MPEG 
[9]. Although Google puts in a great deal 
of efforts to standardize VP8, it is not be 
only card that Google is playing with. 
Very recently, Google released VP9 as 
another royalty-free codec claiming that 
the coding performance of VP9 is slightly 
better than that of HEVC [10]. 

DEVELOPMENT OF ROYALTY-FREE 
VIDEO CODING STANDARDS 
IN MPEG
As reviewed in the previous section, the 
market demand for royalty-free codecs 
led MPEG to investigate the feasibility of 
royalty-free codec standardization in the 

Type-1:
.

ITU-T/ITU-R/ISO/IEC.”
Type-2:

ITU-T/ITU-R/ISO/IEC.”
Type-3:

[FIG1] Three types of licensing declaration for ITU-T, ITU-R, and ISO/IEC. 

[FIG2] The number of issued U.S. patents including the terms “video coding” or 
“video compression” from 1990 to 2012. 
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MPEG portfolio. MPEG has started a new 
activity for a royalty-free-based coding 
standard. Currently, there are three 
tracks with similar goals: IVC, WVC, and 
video coding for browser.

IVC
In 2009, MPEG started a discussion on 
royalty-free coding standards, and the 
IVC group was formed to begin exploring 
this topic [11]. The IVC test model (ITM) 
was developed based on the MPEG-2 
coding structure. The latest version of 
ITM is claimed to show a comparable 
coding performance to AVC/H.264 base-
line profile [12].

WVC
Instead of developing a new coding 
standard for a royalty-free codec, mak-
ing an existing coding standard royalty-
free is also one good solution. The 
MPEG-4 AVC/H.264 constrained profile 
has been identified in MPEG as the 
starting point of WVC. 

In its  104th meeting,  MPEG 
requested the patent holders of MPEG-4 
AVC/H264 constrained profile to declare 
their position with regard to their intel-
lectual property rights (IPR) in the WVC 
project [15]. Considering the aim of 

WVC, the declaration from patent hold-
ers is crucial to ascertain the comple-
tion of WVC as a Type-1 standard. Yet, at 
this point in time, it is still an open 
question whether all patent holders will 
agree on the activity and allow the use 

of the MPEG-4 AVC/H264 constrained 
profile free of charge.

Different from the conventional 
process in MPEG, IVC and WVC should 
consider the IPR issue during the devel-
opment of the standard. With regard to 
the Type-1 standard, a proposed technol-
ogy for a royalty-free coding standard 
should be examined carefully not only in 
terms of its technical merit but also 
from an IPR perspective. If the IPR issue 
of the proposed technology is not clear, 

the technology should not be adopted in 
the standard. Currently, the issue of how 
to resolve the IPR issues during the stan-
dard development is under discussion in 
MPEG. There is a distinction between 
the analysis of the IPR issues by techni-
cal experts from that by patent experts. 
The objective of the IPR analysis within 
MPEG is not about the IPR itself, but 
more of a technical review on how a 
technology has evolved from one tech-
nology to another, whether the technol-
ogy is published as a technical paper or 
registered as a patent.

VIDEO CODING FOR BROWSER
Originally, Google joined the IVC activity 
and proposed the inclusion of VP8. The 
joining of VP8 in the IVC activity resulted 
in a competition between VP8 and ITM. 
Since they have different coding struc-
tures, it was very hard to evaluate the 
tool-level performance of both codecs. 
However, owing to the competition 
between these two codecs, the coding per-
formance has been improved significantly 
during the exploration of IVC. Based on 
these developments, MPEG issued an 
additional call for the royalty-free coding 
standard at the 104th MPEG meeting and 
established a new royalty coding standard, 

[TABLE 1] TOOL-LEVEL COMPARISON OF CODECS.

TOOL MPEG-2 ITM 6.0 AVC/H.264  
(CONSTRAINED
BASELINE PROFILE)

VP8 HEVC

BLOCK PARTITION SIZE 16 X 16 16 X 16 16 X 16 16 X 16 8 X 8–64 X 64

INTRAPREDICTION DC MODE DC MODE FOUR MODES FOR
16 X 16, NINE MODES
FOR 4 X 4

FOUR MODES FOR
16 X 16, TEN MODES
FOR 4 X 4

35 MODES FOR 
PREDICTION UNIT

INTERPREDICTION

MOTION VECTOR
PREDICTION

ONE
NEIGHBORING
BLOCK

FOUR NEIGHBORING
BLOCKS

THREE NEIGHBORING
BLOCKS

EIGHT NEIGHBORING
BLOCKS

SIX NEIGHBORING
BLOCKS

SUBPEL 
ACCURACY

1/2 1/2, 1/4 1/2, 1/4 1/2, 1/4,
AND 1/8

1/2, 1/4,
AND 1/8

P/B-FRAME O O O O O

PARTITION 16 X 16 16 X 16, 16 X 8,
8 X 16, 8 X 8

16 X 16, 16 X 8,
8 X 16, 8 X 8, 4 X 4

16 X 16, 16 X 8,
8 X 16, 8 X 8, 4 X 4

4 X 4–64 X 64

NUMBER OF
 REFERENCES

UP TO TWO UP TO FIVE UP TO 16 UP TO THREE UP TO 16

TRANSFORM FLOATING
DCT 8 X 8

INTEGER
DCT 8 X 8

INTEGER
DCT 4 X 4

INTEGER DCT 4 X 4 INTEGER DCT
4 X 4–32 X 32,
INTEGER DST 4 X 4

ENTROPY CODING VLC CONTEXT-BASED
BAC

CONTEXT-BASED
VLC

CONTEXT-BASED
BAC

CONTEXT-BASED
BAC

LOOP FILTER X X DEBLOCKING
FILTER

DEBLOCKING
FILTER

DEBLOCKING
FILTER, SAMPLE
ADAPTIVE OFFSET

THE FORMATION OF
A LICENSING PATENT 

POOL FOR STANDARDS
IS A DESIRABLE

SOLUTION TO LICENSEES
WHO WANT TO USE

THE STANDARDS.
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called video coding for browser, based on 
VP8 [13], [14].

TECHNICAL REVIEW OF IVC, WVC, 
AND VIDEO CODING FOR BROWSER
Codecs under discussion for royalty-
free standards are the following: 
MPEG-2, AVC/H.264 constrained pro-
file, VP8, and ITM 6.0. The patents of 
MPEG-2 are expiring, AVC/H.264 con-
strained profile is being discussed for 
WVC activity, ITM 6.0 is the candidate 
for the IVC activity, and VP8 is a basic 
structure for video coding for browser. 
Considering that the video coding 
structure has not changed since 
MPEG-1, the general coding structure 
of the above codecs is similar to one 
another. The difference between codecs 
can be found at the tool level. MPEG-2 
and MPEG-H HEVC represent two 
extremes here: If a tool is quite similar 
to MPEG-2, we can consider it close to 
royalty free. On the other hand, a tool 
should be carefully analyzed if the tool 
is closer to HEVC than to MPEG-2. 
Table 1 shows a tool-level summary of 
codecs under discussion.

BLOCK PARTITION
The block partition size has evolved from 
a fixed size to a flexible size. HEVC sup-
ports variable partition sizes while the 
other codecs use only 16 16# as the par-
tition size. From an IPR aspect, the fixed  
16 16#  size can be considered safe to be 
used in royalty-free coding standards

INTRAPREDICTION
The development of intraprediction has 
increased the number of intramodes by 
supporting various directions. Although 
ITM 6.0 uses only direct current mode, 
more modes should be supported for fur-
ther improving coding efficiency.

MOTION VECTOR PREDICTOR
(IN INTERPREDICTION)
The more neighboring information is 
used, the higher the likelihood that 
coding efficiency is improved. Motion 
vector prediction has been developed 
to increase the number of context used 
to predict the current motion vector 
(e.g., the motion vector information 

from reconstructed neighboring 
blocks). Except for MPEG-2, all codecs 
use more sophisticated motion vector 
prediction methods.

 SUBPEL ACCURACY 
(IN INTERPREDICTION)
Although HEVC and VP8 support 1/8 
pixel accuracy for subpel interpolation, 
1/4 accuracy is normally used for the 
other codecs. The choice of subpel accu-
racy seems to be more dependent on pic-
ture resolution than IPR issues.

FRAME TYPE (IN INTERPREDICTION)
The types of frames have not been 
changed since MPEG-2. Paradoxically, this 
implies that quite a few free technologies 
(or nonroyalty bearing patents) are still in 
use in the latest Type-2 standards.

PARTITION (IN INTERPREDICTION)
The development trends of a partition for 
interprediction is similar to that of the 
block partition size. It has been developed 
to support various block sizes and shapes.

TRANSFORM
All the codecs are based on the DCT trans-
form; only HEVC supports the additional 
DST for the 4 4# block size. The develop-
ment trend of the partition in transform 
size is to support integer-based implemen-
tations and the various block sizes.

ENTROPY CODING
Until MPEG-2, arithmetic coding was 
not often chosen even in Type-2 stan-
dards due to IPR issues as well as its 
implementation complexity. Both issues 
are no longer valid as  they have been 
resolved over time.

LOOP FILTER
The technology related to loop filters 
was developed to reduce blocking arti-
facts. Originally, it was not used as a 
normative part of coding standard but 
the AVC/H.264 constrained profile 
adopted a loop filter method for improv-
ing coding efficiency as well as visual 
quality by including a deblocking filter 
into the coding loop. The use of loop fil-
ters is becoming more frequent as 
HEVC adopts additional filters (i.e., 
sample adaptive offset). Currently, ITM 
6.0 does not support any loop filter.

SUMMARY
In this article, we reviewed the recent 
development in royalty-free coding stan-
dardization by presenting the history of 
royalty-free standards in MPEG and ana-
lyzing the relationship between patents 
and standards. As the development of the 
codecs has progressed, the critical issue for 
royalty-free standard development is not so 
much the technical merit but the IPR. 
Therefore,  IPR clearance is mandatory for 
the project, which marks an unprece-
dented work process within MPEG by 
reviewing both technical and IPR aspects. 
MPEG has been very successful in defining 
Type-2 standards, with a huge impact in 
the digital media market. Now, it is time to 
see if MPEG can continue its success story 
in Type-1 standard development.

RESOURCES
MPEG
The MPEG document management sys-
tem Web site, http://phenix.int-evry.fr/
mpeg/, has links to MPEG contribu-
tions. ISO/IEC WG11 members can 
access working documents under inves-
tigation by MPEG.

VP8 
The WebM project home page, http://
www.webmproject.org/, provides informa-
tion about VP8, including open-source 
software and specification. 
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Securing Digital Reputation in Online Social Media

s computing and communica-
tion systems evolve rapidly 

and ubiquitously, it has 
become convenient and 

almost effortless for indi-
vidual users to generate, share, and 
exchange information on online social 
media. Through online social media, a 
wide range of digital content, which cov-
ers blogging, forums, reviews, social net-
working, question-answer databases, 
digital video, mobile phone photography, 
and wikis, is created by users and has 
dramatically changed the way people 
work and interact. However, the simplic-
ity of creating such digital content 
online has also led to an increase of 
users’ concern about the trustworthiness 
of such information. To address the issue 
of trustworthiness, a widely recognized 
approach is to evaluate the quality of the 
online information based on feedback 
from large scale, virtual word-of-mouth 
networks where individuals share their 
own opinions and experiences. The 
aggregated result of such feedback is 
called digital reputation. Digital reputa-
tion has already been widely adopted by 
current online social media. For example, 
viewers on YouTube may “like” or “dislike” 
a video clip, buyers on Amazon share their 
purchasing experiences, travelers evaluate 
hotels or restaurants on Yelp, and readers 
can either “dig” or “bury” a piece of social 
news on Reddit. The reputation-based 
solution is playing an increasingly impor-
tant role in influencing users’ online 
social interactions. For example, eBay sell-
ers with established reputations can 
expect about 8% more revenue than new 
sellers marketing the same goods [1]; the 

survey in [2] reveals that the services 
receiving five-star ratings will attract 20% 
more revenue than the same services 
receiving four-star ratings. 

Driven by the increasing profits in 
online social media, manipulations 
against digital reputation systems are 
gaining popularity, which in turn moti-
vates security researchers around the 
world to prevent reputation manipula-
tions. Most current studies focus on mod-
eling various attacks and developing 
defense schemes and have already 
achieved some exciting results. Besides 
these well-studied attack and defense 
models, there are two under-investigated 
aspects: 1) how to obtain reliable data for 
investigating attack and defense in online 
reputation systems and 2) how to under-
stand the impact of real-world reputation 
on digital reputation security. We briefly 
review the current studies of reputation 
attack and defense models and then dis-
cuss in details these two underinvestigated 
aspects. 

ATTACKS AND DEFENSES IN 
DIGITAL REPUTATION SYSTEMS

REPUTATION ATTACKS
Due to the increasing impact of reputa-
tion systems on individual users’ online 
social interactions, the incentive to 
manipulate digital reputation is growing. 
For example, some eBay users are artifi-
cially boosting their reputation by buy-
ing and selling feedback. On IMDB, a 
movie named Resident Evil: Afterlife had 
kept an overly inflated reputation score 
of 8.5 out of 10 with more than 1,800 
ratings during its first month of release, 
whereas its reputation fell down to only 
5.9 after the promotion period. For just 
US$9.99, a company named “Increase 

YouTube Views” can provide 30 “I like” 
ratings or 30 real user comments to 
video clips on YouTube. Weibo, the 
microblog in China where users can fol-
low others as “fans,” is one of the most 
popular social Web sites with billions of 
users. Some companies are making prof-
its by selling millions of “zombie fans,” 
which are automatically generated fake 
accounts, to boost customers’ popularity. 
Recently, many online businesses that 
provide diverse “reputation repairing” 
services are emerging and gaining popu-
larity. So-called professionally trained 
writers are provided to write positive 
reviews/articles and spread them all over 
the social Web sites, blogs, and forums to 
repair or boost the reputation of individ-
ual customers. The business customers 
can pay to eliminate/suppress negative 
reviews, such as bad ratings on the Bet-
ter Business Bureau Web site (www.BBB.
com) and ComplaintsBoard.com, and 
receive positive reviews on different rep-
utation Web sites, such as Yelp, Google 
Places, CitySearch, Amazon, and 
TripAdvisor. 

Many scientific studies have been 
conducted to investigate possible 
attacks against reputation systems. In 
[3], many existing attack approaches 
have been summarized according to 
their evolution trend, from simple to 
complicated attacks. For example, the 
simplest attack is the whitewashing 
attack where an attacker simply dis-
cards its disreputable identification (ID) 
and re-enters the system by register-
ing a new ID with fresh reputation. A 
slightly more complex attack is the trai-
tor attack, where an attacker restores 
reputation by performing good behav-
iors and then behaves badly again. In 
advanced attacks, such as sybil attacks, 
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the attacker registers multiple user IDs to 
collaboratively provide unfair feedback. 
One of the most recent attack models, 
RepTrap [4], can overturn the reputation 
of a large number of online items (from 
positive to negative) and undermine the 
fairness of the entire reputation system. 
These studies have shown that reputation 
attacks may greatly distort reputation 
scores, undermine users’ confidence in 
the fairness of the reputation systems, 
and lead to unfair business practices. 

REPUTATION DEFENSES
Extensive reputation defense studies 
have been done from online feedback 
(i.e., online ratings/reviews) anomaly 
detection and user-behavior modeling. 
Studies from the former aspect consider 
user ratings as random variables and 
assume dishonest ratings to have statis-
tical distributions different from normal 
ratings. The approach in [5] assumes 
that the normal ratings follow a Beta dis-
tribution and identifies the ratings out-
side the majority’s opinions as dishonest 
ratings. In [6], dishonest ratings are 
eliminated through controlled anonym-
ity and cluster filtering. The defense 
approaches focusing on user behavior 
modeling include the iteration refine-
ment approach proposed in [7], which 
computes the “judging power” for each 
user as the inverse of this user’s rating 
variance. Users with larger judging 
power have higher weights in reputation 
calculation. A personalized trust model 
is proposed in [8] to enable customized 
trust evaluations for different users. An 
in-depth survey on defense approaches 
can be found in [3]. 

SUMMARY
Reputation attack and defense studies 
are developing rapidly. The evolution of 
one side will inspire the development of 
the other, and there is always an “arms 
race” between the reputation attack and 
defense schemes. Although the reputa-
tion attack and defense studies have 
attracted much research attention, there 
are still two challenging issues not fully 
investigated: 1) to obtain reliable and 
real attack data for studying reputation 
attacks and defenses and 2) to under-

stand how the digital reputation inter-
acts with the real-world reputation. 

DATA COLLECTION
The collection of real user attack data is 
important for both the study of reputa-
tion attack strategies and the evaluation 
of reputation defense schemes. However, 
it is costly and inefficient to collect 
attack data by arbitrarily crawling online 
social media and manually identifying 
attacks. It is also extremely difficult to 
obtain the ground truth of such data 
(i.e., whether a piece of feedback is hon-
est or dishonest). Therefore, many stud-
ies rely on simulated data [5], [7], [8]. 
However, the simulated data often only 
represents a few types of attacks, which 
may have already been considered in the 
design stage of the defense schemes. 
Such an evaluation may not reflect the 
defense performance in practical set-
tings, where attackers may develop 
diverse and even unknown attacks. The 
lack of realistic attack data is surely a 
hurdle in reputation security research. 

To address this issue, one promising 
approach is to collect data through 
crowdsourcing, where we can launch 
open calls to an unknown group of solv-
ers (i.e., a crowd). Companies and insti-
tutions can use crowdsourcing to help 
their decision making, problem solving, 
and data collection. There are four 
advantages to collect attack data through 
crowdsourcing: 1) the cost is relatively 
low; 2) it is much easier to discover the 
ground truth, if we provide normal data 
(i.e., honest feedback) and ask the crowd 
to provide attack strategies; 3) the col-
lected attack strategies are generated by 
real human users and are therefore more 
realistic, and 4) more diverse attack 
strategies can be obtained due to the 
different knowledge background of the 
crowd. These advantages make crowd-
sourcing a promising approach to collect 
data for reputation research. 

A COMPETITION CROWDSOURCING: 
CANT COMPETITION
The Challenge-of-Attack-on-Network-
Trust (CANT) was launched in 2008 to 
collect reputation attack data. In the 
competition, we built a virtual reputation 

system with normal rating data. The 
crowd (i.e., players) was required to 
provide attack strategies to downgrade 
the reputation score of a given product 
as much as possible, and the winners 
received cash rewards. The competition 
lasted for 18 days and attracted more 
than 630 registered players with 
826,980 valid submissions. The col-
lected data set has provided rich infor-
mation for investigations of the real 
user attack behaviors and served as test-
ing data set to evaluate the attack-resis-
tance properties of reputation defense 
schemes. Figure 1 is the user interface 
of the CANT competition. 

In the competition, each player regis-
tered one and only one player ID, which 
was used to track the player’s submis-
sions, score, and rank. Each player ID 
submitted attack strategies as many 
times as he or she could. In each specific 
submission, a player P  could use u
malicious user IDs to insert r  unfair rat-
ings ,  where , .u U r R0 01 1 1 1
Here, U and R  were the largest number 
of malicious user IDs and unfair ratings, 
respectively.

All submissions were divided into 
groups according to their u  and r  val-
ues. Specifically, the group G ,u r  con-
tained all submissions that used u
malicious user IDs and r  unfair ratings. 
Within a group, the submission that 
yielded the strongest attack (i.e., down-
grading the reputation score of product 
O1 the most) was marked as the group 
winning submission. Note that there 
might be a tie, leading to multiple win-
ning submissions in one group. Let s ,u r

denote the number of winning submis-
sions in .G ,u r

In each group, the winning submis-
sions equally split one point. If there was 
only one winning submission in G ,u r

(i.e., s 1,u r = ), the player who submitted 
the winning submission gained one 
point. Then, the overall score of a player 
was the sum of his/her winning submis-
sion points. 

A CHALLENGING ISSUE: 
CHEATING BEHAVIORS
Surprisingly, cheating behaviors were 
found during the CANT competition. In 
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particular, one player (denoted by cheater 
C ) registered three player IDs. These 
player IDs had shared the same set of win-
ning submissions and took second, fifth, 
and 32nd place, respectively, as shown in 
Figure 2. In the CANT competition, the 
top 19 players won cash prizes. By using 
pseudoplayer IDs, the cheater C could 
increase his rewards, if not detected. 

How does such cheating behavior 
work? Assume that two players, P1  and 

,P2  both have winning submissions in 
group .G ,u r  Assume P1  has one winning 
submission and P2  has two. Without 
cheating, P1  gets /1 3  points and P2  gets 

/2 3 points, respectively in group .G ,u r

Then, P1  decides to cheat and registers a 
new player ID .Pd  Through the new 
player ID ,Pd  the player P1  can submit 
the same winning submission again. By 
doing so, s ,u r  is increased from three to 
four. Then, P1  gets /1 4  point and P2

gets /1 2  point. Before cheating, the dif-
ference between P1  and P2  is /1 3  point. 
After cheating, the difference between P1

and P2  is reduced to /1 4  point. Through 
the new player ID ,Pd  1) the score gap 

between P1  and P2  is narrowed down, 
and the advantage of P2  over P1  is 
reduced; and 2) the player ID Pd  grabs 

more points and gains a higher rank. 
This is exactly what happened in the 
CANT competition. 

[FIG1] The user interface of the CANT competition.

Day X

Pseudoplayer ID 2

Pseudoplayer ID 1

Original Player ID

Day Y

[FIG2] Rank boosting through multiple pseudo-IDs in the CANT competition.
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This type of cheating behavior can 
exist in other competition crowdsourc-
ing cases, where competition rewards are 
provided. It is important to detect such 
cheating behavior since it will not only 
contribute no meaningful data/solutions 
to the system, but also ruin the fairness 
of the competition. 

DETECTION OF CHEATING
BEHAVIOR
We detect cheating behaviors in the CANT 
competition by building an implicit social 
network among players. Most existing 
social networks inherently describe col-
laboration among users (e.g., Facebook 
users who are connected are friends). Can 
the social network concept be used in a 
competition environment, in which nodes 
(i.e., players) have to defeat others to 
achieve their goals? We define a competi-
tion social network to describe such sce-
narios, in which the nodes’ behaviors are 
dramatically different from these in col-
laborative social networks. 

In the context of the CANT competi-
tion, we introduce the following concepts. 

■ A competition relationship exists 
and only exists between two player 
IDs when they have winning 
submissions in the same group (e.g., 
G ,u r ). 
■ The competition value is com-
puted for each pair of players with 
competition relationship. Assume t ,u r

i

denote the points obtained by player 
Pi  in group .G ,u r  We define 

.
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respectively.
■ In the competition network, each 
player ID is a node. If two player IDs 
have competition relationship (i.e., 
t t 0, ,u r

i
u r
j$ ! ), there is a bidirectional 

link between them and two competi-
tion values are computed. 
■ The competition degree of a node is 
the number of links connected to this 
node in the competition network. 
Although we focus on the CANT com-

petition here, the concept of a competi-
tion network can be extended to other 
scenarios as long as one can define a 
quantitative competition value between 
two players. Ideally, the competition net-
work can be updated whenever a new 
submission is received. To simplify the 
computation, we divide the overall time 
of the competition into 36 equal time 
frames, where one frame roughly repre-
sents a half day. We only update the com-
petition network at the end of each time 
frame. We refer to the main ID con-
trolled by the cheater as the original ID
and to the other IDs controlled by the 
cheater as the pseudo-IDs. The goal is to 
detect the pseudo-IDs and their associa-
tion with the original ID. 

Unlike normal players whose winning 
submissions are accumulated gradually, 
pseudo-IDs usually share winning 
submissions from the original ID within a 
short time, leading to either a low compe-
tition degree (i.e., sharing only unpopular 
winning submissions) or a sudden 
increase in the competition degree (i.e., 
sharing popular winning submissions). 
The player IDs that fulfill either of these 
two conditions will be identified as 
pseudo-IDs. Furthermore, if the competi-
tion value between a player ID and an 
identified pseudoplayer ID is much larger 
than the average competition value, this 

player ID is marked as the associated 
original ID. 

With the competition social network, 
we detect that Player 5 and Player 32 are 
the pseudo-IDs of Player 2, and Player 20 
is the pseudo-ID of Player 1. We compare 
the proposed detection scheme with a 
simple score-based scheme, where a 
player is considered as pseudoplayer if 
his/her score suddenly increases. With a 
simple score-based scheme, we can 
detect Player ID 5 as a pseudoplayer ID, 
while the original ID cannot be detected. 
The results are shown in Table 1. The 
ground truth is obtained by interviewing 
players after the competition. 

THE ROLE OF REAL-WORLD 
REPUTATION IN REPUTATION 
SECURITY RESEARCH
Although digital reputation is an impor-
tant factor in influencing users’ decision 
making, it is not the only one. Beyond 
digital reputation, users also make deci-
sions based on the real-world reputation 
from the words of their friends, neigh-
bors, and coworkers. Although the real-
world reputation does exist, it has 
seldom been considered in the reputa-
tion security research, since the digital 
reputation is believed to be a dominant 
factor. The digital reputation may domi-
nate in global markets where few users 
know each other. However, how about in 
a closely connected social community? 
Will the real-world reputation play an 
important role? If so, how will it influ-
ence the reputation security research? 

COMPARING THE IMPACT OF
DIGITAL REPUTATION AND 
REAL-WORLD REPUTATION
We discuss a study on mobile application 
(i.e., app) installation, in which both digi-
tal reputation and real-world reputation 
affect users’ decision on whether to install 
an app. Similar to other markets, in the 
app market, people believe that the digital 
reputation heavily influences users’ shop-
ping decisions. Since app rating and 
download number are the two most 
important factors in the calculation of 
digital reputation, most manipulation is 
launched against these two factors. A 
well-known attack is the pay-per-install 

[TABLE 1] PSEUDO-ID DETECTION RESULTS OF DIFFERENT SCHEMES.

GROUND TRUTH THE PROPOSED SCHEME SCORE-BASED SCHEME

PSEUDO-ID 5, 32 5, 20, 32 5

ORIGINAL ID 2 2, 1 NONE
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model, where app sellers pay for each 
installation to boost the download num-
ber. Some companies, such as App Lifter, 
provide services for app sellers to directly 
pay users for installing their apps. Some 
other companies, such as Tapjoy and 
Flurry, manage pay-per-install networks 
composed of plenty of apps. Apps in such 
networks encourage their users through 
virtual currency or level upgrading to 
download other apps in the same net-
work. App ratings/reviews can also be 
manipulated; for example, Molinker, the 
app developer with more than 1,000 apps, 
has been revoked from the app market 
due to a review scam [9]. 

On the other hand, with the popular-
ity of tablet computers and smartphones, 
many users have experiences of installing 
mobile apps, and they often share such 
experiences with their local connections 
(e.g., friends, family members, col-
leagues). Thus, within a local community 
(i.e., university campus), apps may also 
have their real-world reputation, which 
provides us with an opportunity to evalu-
ate the impact of the real-world reputa-
tion on users’ decisions. 

TESTING DATA
The testing data is a real user data set 
collected by the Massachusetts Institute 
of Technology Media Lab [10]. This data 
set records the installations of 821 apps 
from 55 participants, are residents living 
in a graduate student residency of a 
major U.S. university, from March to 
July 2010. In this data set, the following 
information has been collected: 

■ Users’ app installation information 
(i.e., which user installed which app 
at what time).  
■ Call log and Bluetooth hits infor-
mation. During the data collection 
period, each participant was given an 
Android-based cell phone with a 
built-in sensing software to capture 
all call logs and Bluetooth hits 
among the given phones. Call logs 
were used to indicate participants’ 
interactions through phone calls. 
Bluetooth hits recorded participants’ 
face-to-face interactions, during 
which the phones were within each 
other’s vicinity. These two types of 

information described participants’ 
daily interactions. 
■ Users’ friendship, affiliation, and 
race information was collected 
through a survey. In the survey, each 
participant provided his/her affilia-
tion and race and rated his/her 
friendship relationship to other par-
ticipants. Such information reflected 
more about participants’ long-term 
relationship.
This data set perfectly matches our 

requirements due to two reasons. First, 
it contains rich information about users’ 
real-world interactions, i.e., call log, 
Bluetooth hits, friendship, affiliation, 
and race, which represents the real-
world reputation. Second, users’ app 
installation information, which is rarely 
available in other data sets, makes it pos-
sible to analyze the installation decision 
for each specific user. Beyond this infor-
mation, we further collect the app rating 
and download number information to 
represent the digital reputation. 

IMPACT OF DIFFERENT 
INFORMATION FACTORS
To evaluate the impact of different infor-
mation on users’ app installations, the 
first step is to accurately estimate app 
installations. We adopt the model in 
[10], which predicts app installations by 
constructing a composite network con-
taining multiple sources of information. 
To the best of our knowledge, this is 
currently the most suitable model in 

terms of predicting app installations 
from diverse information sources. 

In [10], the goal is to derive the opti-
mized model to combine all the pieces of 
information so that users’ app installa-
tions can be predicted with high accu-
racy. We use this model to understand 
which information has larger impact on 
users’ app installations. The assumption 
is that if one factor has larger influence 
on users’ app installations, the optimized 
prediction based on this factor should 
yield a higher accuracy. Therefore, each 
time, we take only one factor as the 
input to optimize the prediction model 
and calculate the prediction accuracy. 
The impact evaluation of different fac-
tors is based on the comparison of the 
prediction accuracy. 

Specifically, to calculate the predic-
tion accuracy, we adopt the F1 -score as 
the performance measurement, which is 
computed as ( ) /precision recall2 # #

( ) .precision recall+  Here the precision 
is the number of correct results divided 
by the number of all returned results, 
and the recall is the number of correct 
results divided by the number of results 
that should have been returned. The 
optimal F1  score is obtained by comput-
ing F1  scores for each point on the pre-
cision-recall curve and selecting the 
largest F1  value. 

Figure 3 demonstrates the optimized 
prediction accuracy for each different 
factor. The y-axis represents the predic-
tion accuracy (i.e., optimal F1  score), 
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[FIG3] The impact of different information factors on the prediction accuracy  
( :I1  call log; :I2  Bluetooth hits; :I3  friendship; :I4  affiliation; :I5  race; :I6  app 
download number; and :I7  app rating).
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and the x-axis represents different input 
factors. From Figure 3, we can make sev-
eral observations: 

■ Compared to random guess, where 
no information is available, all these 
factors achieve higher F1  scores thus 
suggesting that each of these factors 
will provide some information for the 
app installations. In other words, all 
of these factors have impact on users’ 
app installations. 
■ Prediction with call log information 
yields the highest F1  score, indicating 
that call log has more impact on users’ 
app installation decisions than other 
factors. If a user has many frequently 
called friends who have installed a cer-
tain app, the call-log number for this 
user and this particular app is high. 
The detailed computation of call-log 
and other factors can be found in [10]. 
■ The daily interaction information, 
i.e., call log and Bluetooth hits, has a 
much higher impact compared to the 
long-term relation information, such 
as affiliation, race, and friendship. This 
suggests that users’ app installations 
may easily be influenced by people 
who contact them every day. Even if 
two users are friends, if they do not 
contact each other frequently, their 
impact on each others’ app installa-
tions is limited. 
■ The impact of app rating and 
download number, which represents 
the digital reputation, is lying in the 
middle thus suggesting that to install 
apps, users in a closely connected 
social community, such as a univer-
sity campus community, may first 
refer to people whom they contact 
frequently, then check out rating/
download information that is publicly 
available, and at last refer to other 
people who are in the community but 
have less frequent contact.
Based on these observations, it seems 

that in a closely connected social commu-
nity, the real-world reputation has larger 
impact than the digital reputation. Fur-
thermore, among different social connec-
tions, users tend to be influenced more by 
their frequent contacts. Note that this 
study is based on the data from a very spe-
cial community, a university campus and 

may not generalize to a broader con-
sumer base. 

THE ROLE OF THE REAL-WORLD 
REPUTATION ON REPUTATION
SECURITY RESEARCH
The experimental results shown above 
suggest that when a person knows his/her 
friends’ opinion about an app, this person 
will pay much less attention or even 
ignore the online reviews and ratings. 
Although the real-world reputation has 
rarely been considered in the reputation 
security research, it is the dominant fac-
tor in influencing users’ decisions in a 
closely connected social community. 
Then how will this influence the reputa-
tion security research? We would like to 
discuss it from both the attack and the 
defense perspectives. 

From the attack perspective, to influ-
ence users’ decisions in a closely con-
nected social community, manipulating 
the real-world reputation may be more 
effective than manipulating the global dig-
ital reputation. Therefore, the pay-per-
install model may not be a good attack 
strategy for a closely connected social 
community. On the other hand, the app 
developers are suggested to advertise their 
apps on online forums, blogs, and social 
networks (e.g., Facebook, Twitter) to boost 
their real-world reputation and cultivate 
potential customers. Although such pro-
motions are usually more costly and take 
longer, they may be more effective than 
manipulating the digital reputation only. 

From the defense perspective, the 
designer takes advantage that real reputa-
tion overwrites digital reputation in 
closely connected social communities. 
For example, if the designer can identify 
the users who belong to the same closely 

connected social community (e.g., uni-
versity campus) and capture the reputa-
tion of an app in this community (e.g., 
ratings from this community), the 
designer can then investigate whether 
this local reputation agrees with the 
global digital reputation. Any significant 
difference may lead to further investiga-
tion. Another interesting direction is to 
make the real-world reputation more 
accessible. A user may benefit from a 
more personalized reputation system that 
considers this user’s social community. 
Given these, we believe that a good utili-
zation of the real-world reputation can 
well complement the digital reputation 
and help improving its attack-resistance 
properties. This will be an interesting 
direction for future research. 

SUMMARY
In this column, we have discussed secu-
rity issues of digital reputation in online 
social media. In particular, digital repu-
tation has already been proven to be an 
effective approach to ensure information 
quality in the rapidly developing online 
social media. Driven by the low costs and 
large potential profits of manipulating 
digital reputation, diverse attacks are 
emerging, which attracts much research 
attention. However, due to the lack of 
realistic attack data, the evaluation of the 
reputation defense schemes has been a 
challenging task. A promising approach 
is to collect the real user attack data 
through crowdsourcing. Unexpectedly, 
cheating behaviors may also exist in the 
crowdsourcing process. To address this 
issue, we described a “competition social 
network” to effectively model the crowd’s 
behavioral patterns and to detect anom-
aly. Finally, we have compared the digital 
reputation and the real-world reputa-
tion, and believe that the integration of 
the two types of reputation will be an 
interesting direction for research aiming 
to provide secure and trustworthy repu-
tation in online social media. 

RESOURCES
■ Everything you need to know 
about eBay feedback. [Online]. Avail-
able: http://www.newlifeauctions.
com/feedback.html 

A GOOD UTILIZATION
OF THE REAL-WORLD

REPUTATION CAN
WELL COMPLEMENT

THE DIGITAL REPUTATION
AND HELP IMPROVING

ITS ATTACK-RESISTANCE
PROPERTIES.
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■ R. Kalla. IMDB, Whats going on 
with your scores? [Online]. Available: 
http:/ /www.thebuzzmedia.com/
imdb-whats-going-on-with-your-
scores/
■ Increase views and ratings on You-
Tube videos. [Online]. Available: http://
www.earnersblog.com/increase-
youtube-video-views/ 
■ S. Millward. Of Sina Weibo’s 500 
million registered users, Are 90% 
actually zombies? [Online]. Available: 
http://www.techinasia.com/sina-weibo-90-
percent-users-zombies/ 
■ Reputation repair. [Online]. Avail-
able: http://www.reputationchanger.
com/ 
■ App Lifter. [Online]. Available: 
http://applifter.com/ 
■ Tapjoy. [Online]. Available: http://
developers.tapjoy.com/how-it-works/ 
■ Flurry. [Online]. Available: http://
www.flurry.com/appCircle-a.html.
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[dates AHEAD]

Please send calendar submissions to:  
Dates Ahead, c/o Jessica Barragué  
IEEE Signal Processing Magazine  
445 Hoes Lane  
Piscataway, NJ 08855 USA  
e-mail: j.barrague@ieee.org
(Colored conference title indicates 
SP-sponsored conference.)

2013
[DECEMBER]
2013 Fifth International Workshop on 
Computational Advances in 
Multisensor Adaptive Processing 
(CAMSAP)
15–18 December, Saint Martin, France.
General Cochairs: Aleksandar Dogandži 
and Martin Haard
URL: http://www.stevens.edu/camsap2013/

2014
[MARCH]
IEEE World Forum 
on Internet of Things (IOT)
6–8 March, Seoul, South Korea.
General Chair: Roberto Minerva
General Cochairs: Jaiyong Lee, Edward Cole, 
Stephen Dukes, Paul Hartmann, Abbas 
Jamalipour, Jean Philippe Vasseur, John Vig, 
Yen-Kuang Chen, and Mengchu Zhou
URL: http://sites.ieee.org/wf-iot//

Data Compression Conference (DCC)
26–28 March, Salt Lake City, Utah.
URL: http://cs.brandeis.edu/~dcc/index.html

[APRIL]
IEEE International Symposium 
on Biomedical Imaging (ISBI)
28 April–2 May, Beijing, China.
General Chairs: Ge Wang and Bin He
URL: http://biomedicalimaging.org/2014/

[MAY]
IEEE International Conference  
on Acoustics, Speech, and
Signal Processing (ICASSP)
4–9 May, Florence, Italy.
General Cochairs: Fulvio Gini 
and Marco Luise
URL: http://www.icassp2014.org/

IEEE Radar Conference (RadarCon)
19–23 May, Cincinnati, Ohio.
General Chair: Brian Rigling
URL: http://www.radarcon2014.org/

6th International Symposium 
on Communications, Control, 
and Signal Processing (ISCCSP)
21–23 May, Athens, Greece.
Honorary Chair: Anastasios Venetsanopoulos 
General Cochairs: Sanjit K. Mitra and 
Thanos Stouraitis
URL: http://isccsp2014.upatras.gr/

[JUNE]
IEEE Sensor Array and Multichannel 
Signal Processing Workshop (SAM)
22–25 June, A Caruña, Spain.
URL: http://www.gtec.udc.es/sam2014/

IEEE Statistical Signal Processing 
Workshop (SSP)
29 June–2 July, Gold Coast, Australia.

[JULY]
2nd IEEE China Summit and 
International Conference on Signal and 
Information Processing (ChinaSIP)
9–13 July, Xi’an, China. 
General Chairs: Mingyi He and Kung Yao
URL: http://www.chinasip2014.org/CfP.htm

IEEE International Conference 
on Multimedia and Expo (ICME)
14–18 July, Chengdu, China.
General Cochairs: Touradj Ebrahimi, 
Shipeng Li, Houjun Wang, and Jie Yang
URL: http://www.icme2014.org/

[DECEMBER]
6 –9 December, South Lake Tahoe, California.
IEEE Spoken Language Technology 
Workshop (SLT)
General Chairs: Murat Akbacak 
and John Hansen

2015
[APRIL]
IEEE International Conference  
on Acoustics, Speech, and
Signal Processing (ICASSP)
19–24 April, Brisbane, Australia.
General Cochairs: Vaughan Clarkson 
and Jonathan Manton
URL: http://icassp2015.org/

Digital Object Identifier 10.1109/MSP.2013.2285948
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The Discipline of Signal Processing: Part 2

MOS KAVEH
(mos@umn.edu)
■ Professor of electrical and computer 

engineering, University of Minnesota.
■ Associate dean for research and plan-

ning for the College of Science and 
Engineering, University of Minnesota. 

■ President, IEEE Signal Processing 
Society (2010–2011).

■ Vice president, awards and member-
ship, IEEE Signal Processing Society 
(2003–2007).

■ Vice president, publications, IEEE Sig-
nal Processing Society (1993–1996).

■ General chair, 1993 International Con-
ference on Acoustics, Speech, and Sig-
nal Processing (ICASSP).
In Shakespeare’s Romeo and Juliet,

Juliet famously muses “What’s in a name? 
That which we call a rose, by any other 
name would smell as sweet.” Good ques-
tion, Juliet. Many have been wondering 
whether signal processing is the “right” 
name for our field and profession in the 
21st century. Mind you, the name is as 
meaningful and sweet for those of us who 

have and continue to work in signal pro-
cessing or in areas  closely allied with it. 
Such questioning has more to do with 
the branding of what we do so others—
students, general public, media, and 
government and business decision mak-
ers—appreciate the breadth, impact, and 

continued critical relevance of signal pro-
cessing in the information- and data-
driven world we live in.

Over the past four decades, the field 
has evolved and diversified tremendously 
in its fundamentals and applications. 
Signal processing is everywhere; it is sci-
ence and application agnostic, dynamic, 
and synergistic. Its tools and the result-
ing technologies ubiquitous and enablers 

of how we live, communicate, play, and 
discover. While initiated and nurtured in 
electrical engineering, the discipline has 
been richly influenced by theories and 
tools of mathematics, statistics, speech 
and language, computer and computa-
tional sciences, physics, and geophysics. 

Key in the diversification of signal pro-
cessing is the notion and character of a 
signal itself, which now is any representa-
tion of information. The first sentence in 
the field of interest of the IEEE Signal 
Processing Society (http://www.signalpro-
cessingsociety.org/about-sps/scope-mis-
sion/) states “Signal processing is the 
enabling technology for the generation, 
transformation, extraction, and interpre-
tation of information.” Today, a signal 
processing professional is likely to be 
using signals/data and related models to 
solve problems in audio, speech, image, 
video, communications, energy systems, 
social systems and networks, finance, 
genomics, brain function, astronomy, to 
name a few.

Alas, signal processing is not a princi-
pal go-to discipline for talent and exper-
tise when employment is offered, and 
collaboration is sought on data analytics, 

EDITOR’S INTRODUCTION

In this issue of IEEE Signal Processing Magazine, we continue 
the exercise of compiling in a few words the reflections from 
signal processing experts on the following three questions:

How would you explain what signal processing is to some-
body with no significant background and knowledge in 
technology disciplines?
What does signal processing mean to you? (to be 
answered in technical terms, as preferred/needed)
Where do you see the field of signal processing ten years 
from now?

Our goal was to use these questions as conduits to elicit 
reflections about what is signal processing and to where it is 

headed. In this issue of the magazine, we present the 
thoughts from Mos Kaveh and Li Deng. As I mentioned in the 
November 2013 issue, we want to make this article an exer-
cise of perspectives and reflection, so please feel free to share 
with me your own thoughts on the matter. I hope that you, 
our readers, will find this column interesting and you will 
enjoy reading this perspective from the experts in the signal 
processing field.

Andres Kwasinski (axkeec@rit.edu) is an associate professor 
at the Rochester Institute of Technology and area editor of 
columns and forum of IEEE Signal Processing Magazine.

Digital Object Identifier 10.1109/MSP.2013.2282792

Date of publication: 5 December 2013

KEY IN THE
DIVERSIFICATION OF 
SIGNAL PROCESSING 
IS THE NOTION AND

CHARACTER OF A SIGNAL 
ITSELF, WHICH NOW IS

ANY REPRESENTATION OF 
INFORMATION.

Mos Kaveh and Li Deng

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_________

_____________

_________________________

___

_________

mailto:mos@umn.edu
http://www.signalprocessingsociety.org/about-sps/scope-mission/
mailto:axkeec@rit.edu
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [158] JANUARY 2014

[REFLECTIONS]continued

such as modeling, mining, and classifica-
tion. The emergence of data science, pri-
marily through the morphing of 
statistics, elements of computer and 
information sciences and business analyt-
ics, is creating additional challenges, but 
also opportunities for the signal process-
ing community. The challenge remains in 
the brand. Not only does “signal process-
ing inside” characterize lack of visibility of 
the field and its technologies in the 
broader community, scientific or other-
wise, the vibrant subdisciplines of signal 
processing that are contributing signifi-
cantly to data acquisition and analytics for 
small and big data, are doubly hidden.

So say I am at a party, and someone 
asks me about my field of research. Signal 
processing, I say. Faced with a blank stare, 
and a long sip of his drink, I open up. One 
of my recent students and I worked with a 
radiologist to develop algorithms to help 
with the detection of certain abnormali-
ties from magnetic resonance imaging of 
the brain. Another student and I came up 
with a way of automatically mitigating 
the interference from wind turbines on 
Doppler weather radar signals, so that 
meteorologists would not get confused in 
classifying the severity of a storm, and 
another student...The conversation 
becomes really interesting after this tech-
nical prelude.

Signal processing is thriving. Submis-
sions to the publications and conferences 
of the IEEE Signal Processing Society 
have been increasing, apparently with no 
end in sight. To more effectively brand 
what we do, we have no choice but to 
connect with applications that are mean-
ingful to the public. And, to have real 
impact beyond our own circles, we must 
actively engage and collaborate with 
domain experts, for example, in biology, 
medicine, energy, and business. We must 
engage such domain experts in our publi-
cations and conferences, and, in turn, 
communicate results in influential ven-
ues outside of our own.

LI DENG
(deng@microsoft.com)
■ Principal researcher of Microsoft 

Research, and affiliate professor of the 
University of Washington (since  2000).

■ Assistant, tenured associate, and full 
professor of the University of Water-
loo, Canada (1989–1999).

■ Member, Board of Governors of the 
IEEE Signal Processing Society 
(2008–2010).

■ Editor-in-chief, IEEE Signal Process-
ing Magazine (2010–2012).

■ Editor-in-chief, IEEE/ACM Transac-
tions on Audio, Speech, and Lan-
guage Processing (2012–2014).

■ General chair, ICASSP 2013.

How would you explain what signal 
processing is to somebody with no 
significant background and knowl-
edge in technology disciplines?

Signal processing is in the everyday 
lives of you and me. Each time you turn 
on a cell phone, signal processing is 
working for you. Each time you start your 

car engine, you rely on signal processing. 
The type of “signals” in signal processing 
is very broad: audio, music, speech, lan-
guage, text, image, graphics, video, sensor 
measurements, communication, geo-
physical, sonar, radar, biological, chemi-
cal, molecular, genomic, medical, data, 
etc. What can you do with all these sorts 
of “signals?” Without signal processing, 
they may be of little use. With signal pro-
cessing, such rich sets of information can 
be transformed to enable devices or 
machines to operate according to your 
needs or to even exhibit intelligent behav-
ior. Examples are the fast transmission of 
videos for you to enjoy watching You-
Tube, where video coding is at play, 
Kinect in Microsoft Xbox, and conversa-
tional devices such as iPhone’s Siri. It is 
fair to characterize signal processing as 
applied mathematics for modern informa-
tion technology.

What does signal processing means 
to you?

Signal processing is an enabling 
technology that allows many forms of 
signal and information to be made prac-
tically useful via many forms of trans-
formation or “processing.”  The 
development of signal processing over 
the past decade or so has expanded the 
traditional concepts of both “signal” 
and “processing” in significant ways. A 
few years ago, I wrote an editorial [1] 
elaborating on the expansion in both of 
these axes. Along the “signal” axis, the 
traditional signals of audio, speech, 
image, video, communication, geophys-
ical, sonar, radar,  etc. has been 
extended to include language, text, bio-
logical, genomic, and social interactions 
data. What characterizes such new types 
of signals is the structure embedded in 
them (e.g., sequential or graph struc-
ture) and the symbolic nature endowing 
the signals with semantic information 
(e.g., language and genomic data). 
Along the “processing” axis, the tradi-
tional concepts on digital signal pro-
cessing are also growing to encompass 
the elements of interpretation and 
understanding of the signals. So what 
modern signal processing means to me 
is the expanded scope along both of the 
axes above. In my own areas of speech 
and language processing research, the 
traditional disciplines of speech analy-
sis, coding, enhancement, synthesis, 
and recognition are now reaching 
higher levels of “processing” that com-
prise understanding of the meaning 
embedded in the speech signal, not just 
getting the text out of the signal, and 
making decisions on what the appropri-
ate response the conversational device 
should give based on the understanding 
of the speech signal. 

Where do you see the field of signal 
processing ten years from now?

Within the next ten years, I expect a 
great deal of and growing interplay 
between the community of signal process-
ing and those from artificial intelligence, 
machine learning, computer science, and 

TO MORE EFFECTIVELY 
BRAND WHAT WE DO, 
WE HAVE NO CHOICE

BUT TO CONNECT
WITH APPLICATIONS

THAT ARE MEANINGFUL 
TO THE PUBLIC.
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applied mathematics (e.g., optimization). 
As an example, we just announced that 
our Society’s IEEE Transactions on 
Audio, Speech, and Language Processing
is merging with the ACM counterpart, 
with the main goal of expanding language 
processing with greater strength from 
computer science researchers. As a result 
of this merger, the number of editorial 
board members has now increased to con-
tain more computer scientists including 
those from major technology companies 
such as Google, Microsoft, IBM, and Face-
book. In particular, machine learning will 
be more and more deeply ingrained 
within signal processing technology. In a 
recently published paper that I wrote 
together with X. Li, now a Facebook sci-
entist, during a period of close to three 
years [2], we analyzed the mutual influ-
ence between machine learning and 
speech recognition over the past 30 years, 

and reached the conclusion that the 
major effects of such positive influence 
are just beginning. An important recent 

example is the spectacular success of deep 
learning in speech recognition, as a result 
of timely collaboration between signal 

processing and machine-learning 
researchers [3], [4]. In ten years, I believe 
signal processing will become more 
ubiquitous, with intelligent behavior 
emerging from signal processing algo-
rithms/techniques developed likely side-by-
side with machine learning and artificial 
intelligence methods and technology. 
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www.avss2014.org

General Chair:  
Hanseok Ko, Korea Univ.  

General Co-Chair:  
Jin Young Choi, SNU 

Program Chair:
Daejin Kim, POSTECH 

Peter Tu, GE Global Research 

Workshops Chair:  
Inso Kweon, KAIST 

Industrial Chair: 
Sungho Cho, Hanyang Univ.   

Local Arrangements Chair:
Sangmin Yoon, Kookmin Univ. 

Publicity Chairs: 
Moon Gi Kang, Yonsei Univ. 

Publications Chair: 
Dongil Kim, Samsung-Techwin 

Finance/Registration Chair: 
Wooil Kim, Incheon Univ 
. 
Web Chair:              
Jihyun Kim, Korea Univ. 

AVSS is the premier annual international conference in the field of video and signal-based 
surveillance that brings together experts from academia, industry, and government to advance 
theories, methods, systems, and applications related to surveillance. AVSS is sponsored by the 
IEEE and, in particular, by its two societies, the Signal Processing Society (IVMSP TC) and the IEEE 
Computer Society (PAMI TC). 

AVSS will celebrate its 11th anniversary in Seoul in 2014. It has been steadily growing in 
both stature and attendance, from about 70 attendees in 1998 (Genova, Italy) to 125 in 2010 
(Boston, USA), 140 in 2011 (Klagenfurt, Austria), and about 200 in 2013 (Krakow, Poland). A 
strong attendance is expected in Seoul in 2014. AVSS focuses on underlying theory, methods,
systems, and applications of surveillance and invites submissions in areas listed below, especially 
cross-disciplinary and game-changing ones. The list of topics of interest includes, but is not 
limited to: 

Sensor-Centric Processing 
Sensors (visible/infrared/3D/mm-wave/ 
audio/radio, etc.) 
Ground, airborne, satellite based (fixed/ 
mobile/UAV) 
Crowdsourcing (cellular, social networks) 
Calibration and positioning (GPS, etc.) 
Communications and networked sensing 

Data Management & Human-Computer Interaction 
Compression and summarization 
Archival, search and retrieval 
Human-computer interfaces 
Visualization algorithms 
Mobile and distributed interaction 

Security and Privacy
Data authenticity 
Privacy in surveillance 
Forensics 
Biometrics (standoff, multi-modal, voice, etc.) 
Cybersecurity for surveillance (wireless, 
network, computer) 

Processing, Detection, Tracking & Recognition 
Modeling and feature selection 
Detection and estimation (change, 
motion, anomaly, saliency, pattern) 
Data association and (multi) target 
tracking 
Classification and recognition 
Multi-modal fusion 

Analytics, Situation Awareness & Decision 
Making 

Activity/interaction analysis and 
monitoring 
Intention
estimation and situation awareness 
Crowdsourcing-based methods 
Cognitive dynamic systems and bio-
inspired methods 

Surveillance Systems and Applications 
Hardware and software architectures 
Research prototypes 
Simulators 
Civilian, industrial, and military 
Transportation (road, rail, air, maritime) 
Performance evaluation 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Kompatsiaris, D. Gatica-Perez, X. Xie, and J. Luo 1229

SPECIAL SECTION PAPERS

Learning Crowdsourced User Preferences for Visual Summarization of Image Collections http://dx.doi.org/10.1109/TMM.2013.2261481 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Rudinac, M. Larson, and A. Hanjalic 1231

Tracking Large-Scale Video Remix in Real-World Events http://dx.doi.org/10.1109/TMM.2013.2264929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Xie, A. Natsev, X. He, J. R. Kender, M. Hill, and J. R. Smith 1244

Towards Cross-Domain Learning for Social Video Popularity Prediction http://dx.doi.org/10.1109/TMM.2013.2265079 . . . . . . . . . . . . . . . . . . . . . . .
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Paper Submission The official language of the conference is English. Prospective authors are
invited to submit up to 4 pages in length (with an optional 5th page containing only references). Any
accepted paper included in the final program is expected to have at least one author or qualified proxy
attend and present the paper at the conference. More information can be found at the conference Web
or obtained via conference email.

Web www.chinasip2014.org                Email chinasip2014@163.com

Contact:
Chinasip 2014 Secretariat
Email: chinasip2014@ieee.org 
URL: http://www.ieeechinasip14.org 

       Organizing Committee
Honorary Chair:       
    Jianguo HUANG, IEEE Xi’an Section

General Chairs: 
    Mingyi HE, NW Polytech Univ, China
    Kung YAO, UCLA, USA

Technical Program Committee Chairs:
    Jingdong CHEN, NW Polytech Univ, China
    Xuelong LI, Chinese Academy Science
    Z Jane WANG, UBC, Canada
Finance Chair:
    Yan FENG, NW Polytech Univ, China
Industry Forum Chair:
    Li DENG, Microsoft Research, USA
Special/Invited Session Chairs:
    Hongwei LIU, Xidian Univ, China
    Hong ZHAO, Univ Alberta, Canada
Education & Research Panel Chairs:
    Changshui ZHANG,Tsinghua Univ, China
    Guisheng LIAO, Xidian Univ, China

Publicity Chairs:
    Xuanqin MOU, Xi’an Jiaotong Univ, China
    Yanning ZHANG, NW Polytech Univ, China

Publication Chairs:
    Yangyu FAN, NW Polytech Univ, China
    Guizhong LIU, Xi’an Jiaotong Univ, China

Summer School & Tutorial Chairs:
    Kehu YANG, Xidian Univ, China
    Lei XIE, NW Polytech Univ, China
Local Arrangement Chair:
    Bo LI, NW Polytech Univ, China

Demo & Exhibition Chair:
Ling WANG, NW Polytech Univ, China

Registration Chairs:
    Chengbing HE, NW Polytech Univ, China
    Shaohui MEI, NW Polytech Univ, China
International Liaisons:
   David ANDERSON, Georgia Tech, USA
   Chengchew LIM, Adelaide Univ, Australia
   Shoji MAKINO, Tsukuba Univ, Japan
   Changyun WEN, NTU, Singapore

12-15, July 2014, Xi’an, CHINA

Tracks
Speech, Audio, and Language
Image/Video Coding, Transmission and Processing
Multimedia SIP and Emerging Applications
Pattern Recognition for SIP
Machine Learning and Big Data Analysis for SIP

SIP for Bioinformatics & Bio/Medicine
Information Forensics & Security (Including Biometrics)
SIP for Communications and Networking
SIP Theory, Methods, and Applications
Remote Sensing Data Processing
Multichannel and Array Signal Processing

Xi'an  The ancient capital city of 13 dynasties known as Chang'an and with more than 3,100 years of
history, records the great changes of the Chinese nation just like a living history book. Specialists and
scholars regard it as an inexhaustible treasure house of literature while heads of state from many
countries and people from all over the world turn their eyes to this tourist attraction, trying to broaden
their knowledge of Chinese civilization.

ChinaSIP’14
The 2nd IEEE China Summit and International Conference on Signal and Information Processing
(ChinaSIP’14) will be held in Xi’an, China from 9th to 13th, July 2014. ChinaSIP is a new annual summit
and international conference held in China for domestic and international scientists, researchers, and
developers to report and discuss their latest progress in all theoretical and technological aspects of
signal and information processing. ChinaSIP is a unique platform developed by IEEE signal processing
society (SPS) to help colleagues in China engage with the global community, by building a broad
technical community with domestic and international colleagues, providing a ladder for China's signal
and information processing professionals to further advance on the global stage. Meanwhile, it offers
global colleagues opportunities to network and develop international collaborations. The conference
will feature world-class speakers, tutorials, exhibits, and over decade lectures and poster sessions. The
regular technical program tracks and topics include (but not limited to):

Features
    Keynote and invited talks by global experts
    Demos and showcase of recent journal articles 
    Summer school and hands-on tutorials
    Education & research panel 

Important Dates:
Deadline for Full Paper submission                      10  Feb    2014
Notification of Acceptance                          15  April  2014
Deadline for Camera Ready  Paper Submission  10  May   2014
Deadline for Authors’ Registration                        15  May   2014

    Education & research panel
    Industry forum and exhibits
    Professional development and networking
    with global leaders

Supporters A variety of support opportunities for ChinaSIP are outlined at conference web. By
supporting ChinaSIP, your organization will be highly visible and demonstrate its stature in the exciting
field of SIP to a broad audience of researchers, educators, and practitioners from industry, government,
and academia both within and beyond China. The participation and support from your organization will
significantly enhance the quality of the event, and in turn benefit your organization through raising
broad awareness of your technical contributions (products or R&D work) and attracting talents from
domestic and global SIP communities.

Steering Committee
Chair:
   Min WU, Univ Maryland, USA
Members-at-Large:
   Yun HE, Tsinghua Univ, China
   Jiwu HUANG, Sun-Yat-Sen Univ, China
   Xingzhao LIU, Shanghai Jiaotong U, China
SPS VP Conference:
    Wan-Chi SIU
SPS VP Technical Direction:
   Charles Bouman
SPS Region-10 Director:
   Ta-Sung LEE
IEEE China Operation Director:
    Ning HUA

9-13 July 2014      Xi’an CHINA
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Organizing Committee

General Chairs
Béatrice Pesquet-Popescu
and James Fowler

Vice-General Chair
Frédéric Dufaux

Technical Program Chairs
Pascal Frossard
and Marc Antonini

Treasurer
Michel Kieffer

Publicity Chair
Jean-Luc Dugelay

Special Session Chairs
Adriana Dumitras
and Ricardo de Queiroz

Tutorial Chairs
Mihaela van der Schaar
and Josiane Zerubia

Plenary Chair
Christine Guillemot

Awards Chairs
Hamid Krim
and Marco Cagnazzo

Publication Chair
Jocelyn Chanussot

Registration Chair
Yannick Berthoumieu

IEEE Student Activities Chairs
Nelly Pustelnik
and Mihai Ciuc

Electronic Media Chair
Cyril Concolato

Exhibition Chairs
Jean LeFeuvre
and Constantin Vertan

Local Arrangements Chairs
Chloé Clavel, Maria Trocan
and Bogdan Ionescu

Industry Liaisons
Jacques Blanc-Talon,
Frédéric Barbaresco
and Aljoscha Smolic

US Liaison
Sheila Hemami

Asia Liaisons
Shipeng Li
and Oscar Au

2014 IEEE International Conference on Image Processing
CNIT La Défense - Paris, France

CALL FOR PAPERS

The International Conference on Image Processing (ICIP), sponsored by the 
IEEE Signal Processing Society, is the premier forum for the presentation 
of technological advances and research results in the fields of theoretical, 
experimental, and applied image and video processing. ICIP 2014, the twenty-
first in the series that has been held annually since 1994, brings together 
leading engineers and scientists in image and video processing from around 
the world. Research frontiers in fields ranging from traditional image-
processing applications to evolving multimedia and video technologies are 
regularly advanced by results first reported in ICIP technical sessions. Topics 
include, but are not limited to:

Paper Submission: Prospective authors are invited to submit papers of not
more than four (4) pages for technical content including figures and possible 
references, and with one additional optional 5th page containing only 
references. Papers will be accepted by electronic submission only at:
www.icip2014.com.

Please see: www.icip2014.com for details regarding Paper Submission,
"no-show" policy, special sessions, and tutorials.

Image/video coding and transmission: Still-image and video coding, 
stereoscopic and 3-D coding, distributed source coding, source/
channel coding, image/video transmission over wireless networks
Image/video processing: Image and video filtering, restoration 
and enhancement, image segmentation, video segmentation and 
tracking, morphological processing, stereoscopic and 3-D processing, 
feature extraction and analysis, interpolation and super-resolution, 
motion detection and estimation, color and multispectral processing, 
biometrics
Image formation: Biomedical imaging, remote sensing, geophysical 
and seismic imaging, optimal imaging, synthetic-natural hybrid image 
systems
Image scanning, display, and printing: Scanning and sampling, 
quantization and halftoning, color reproduction, image representation 
and rendering, display and printing systems, image-quality assessment
Image/video storage, retrieval, and authentication: Image and video 
databases, image and video search and retrieval, multimodality image/
video indexing and retrieval, authentication and watermarking
Applications: Biomedical sciences, mobile imaging, geosciences and 
remote sensing, astronomy and space exploration, document image 
processing and analysis, other applications.

Submission deadline January 31, 2014
Notification of acceptance April 30, 2014
Camera-ready papers May 15, 2014
Author registration May 25, 2014

Tutorials: Tutorials will be held on October, 27, 2014. 
Brief proposals should be submitted by November 29, 2013 at the conference 
web site. Proposals for tutorials must include a title, an outline of the tutorial 
and its motivation, a short description of the material to be covered, contact 
information including name, affiliation, email, and mailing address for each 
presenter, and a two-page CV for each presenter.

web site : www.icip2014.com
Oct 27-30, 2014
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■ 50 ■ 100 ■ 200 ■ 300 ■ 400 ■ 500 or _________ (in multiples of 50) reprints.
■ YES ■ NO Self-covering/title page required. COVER PRICE: $74 per 100, $39 per 50.
■ $58.00 Air Freight must be added for all orders being shipped outside the U.S.
■ $18.50 must be added for all USA shipments to cover the cost of UPS shipping and handling.

...PLEASE SEND ME...

Number of Text Pages

1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40 41-44 45-48
50 $126 $211 $243 $245 $285 $340 $371 $408 $440 $477 $510 $543
100 $242 $423 $476 $492 $570 $680 $742 $817 $885 $953 $1021 $1088

...2011 REPRINT PRICES (without covers)..

■ Check enclosed. Payable on a bank in the USA.
■ Charge my: ■ Visa ■ Mastercard ■ Amex ■ Diners Club

Account # ___________________________________________ Exp. date ____________________________________

Cardholder’s Name (please print): ____________________________________________________________________
________________________________________________________________________________________________
■ Bill me  (you must attach a purchase order)  Purchase Order Number ______________________________________

Send Reprints to: Bill to address, if different: 
_____________________________________ _______________________________________________________
_____________________________________ _______________________________________________________
_____________________________________ _______________________________________________________
_____________________________________ _______________________________________________________

Because information and papers are gathered from various sources, there may be a delay in receiving your reprint request.  This is especially true with 
postconference publications. Please provide us with contact information if you would like notification of a delay of more than 12 weeks.

Telephone: _______________________ Fax: _________________________  Email Address: _____________________

...PAYMENT...

Tax Applies on shipments of regular reprints to CA, DC, FL, MI, NJ, NY, OH and Canada (GST Registration no. 12534188).

Prices are based on black & white printing. Please call us for full color price quote, if applicable.

Authorized Signature: ___________________________________________     Date:__________________

Author: ________________________________________

Publication Title: _________________________________

Paper Title: _____________________________________

_______________________________________________

RETURN THIS FORM TO:
IEEE Publishing Services
445 Hoes Lane
Box 1331
Piscataway, NJ  08855-1331
Call Reprint Department at (732) 562-3941 
for questions regarding this form
(732) 981-8062 - FAX

...PLEASE FILL OUT THE FOLLOWING

ORDER FORM FOR REPRINTS
Purchasing IEEE Papers in Print is easy, cost-effective and quick.

Complete this form, tear it out, and either fax it (24 hours a day) to 732-981-8062 or mail it back to us.

Larger quantities can be ordered. Email reprints@ieee.org with specific details.
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Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 

engineering—digital
10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 

management
5. Design engineering management

—analog
6. Design engineering management

—digital
7. Research and development

engineering
8. Design/development engineering

—analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2014 IEEE MEMBERSHIP APPLICATION

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone

Primary E-mail

Secondary Address

Company Name Department/Division

Street Address City State/Province

Postal Code Country

Secondary Phone

Secondary E-mail

 Home  Business  (All IEEE mail sent here)  

 Home  Business  
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(Updated March 2012)

The IEEE TRANSACTIONS are published monthly covering advances in the

the journal with the most appropriate scope for your submission.
Authors are encouraged to submit manuscripts of Regular papers (papers

which provide a complete disclosure of a technical premise), or Correspon-
dences (brief items that describe a use for or magnify the meaning of a single
technical point, or provide comment on a paper previously published in the
TRANSACTIONS). Submissions/resubmissions must be previously unpublished
and may not be under consideration elsewhere.

being addressed, (b) state why it is important to solve the problem, and (c) give

By submission/resubmission of your manuscript to this TRANSACTIONS, you
are acknowledging that you accept the rules established for publication of man-
uscripts, including agreement to pay all overlength page charges, color charges,
and any other charges and fees associated with publication of the manuscript.
Such charges are not negotiable and cannot be suspended.
New and revised manuscripts should be prepared following the “New Manu-

script Submission” guidelines below, and submitted to the online manuscript

be prepared following the “FinalManuscript SubmissionGuidelines” below. Do
not sendoriginal submissions or revisions directly to theEditor-in-Chief orAsso-
ciate Editors; theywill access yourmanuscript electronically via the ScholarOne
Manuscripts system.

Please follow the next steps.
1. Account in ScholarOne Manuscripts. If necessary, create an account in the

you already have an existing account which is based on your e-mail ad-
dress and may have been created for you when you reviewed or authored
a previous paper.

2. Electronic Manuscript
double-spaced format (one full blank line between lines of type) using a
font size of 11 points or larger, having a margin of at least 1 inch on all
sides. For a regular paper, themanuscript may not exceed 30 double-spaced
pages, including title; names of authors and their complete contact infor-

ures and equations are visible in your document before you “SUBMIT”
your manuscript. Proofreading is critical; once you submit your manu-
script, the manuscript cannot be changed in any way. You may also submit

issues prior to completing the submission process.
3. . You are required to also submit
a roughly formatted version of the manuscript in single-spaced, double
column IEEE format (10 points for a regular submission or 9 points for

equations stick out). over length page charges
are levied beginning with the 11th published page of your manuscript.
You are, therefore, advised to be conservative in your submission. This

proximate publication length of the manuscript and gives an additional

paid when billed upon publication.

ScholarOneManuscripts site.
4. . Please upload pdf versions of all items
in the reference list which are not publicly available, such as unpublished
(submitted) papers. Other materials for review such as supplementary ta-

5. Submission.

sion will open on screen containing the manuscript tracking number and

contributing authors. Once you click “Submit,” your manuscript cannot be
changed in any way.

6. Copyright Form and Consent Form. By policy, IEEE owns the copyright
to the technical contributions it publishes on behalf of the interests of the
IEEE, its authors, and their employers; and to facilitate the appropriate
reuse of this material by others. To comply with the IEEE copyright poli-
cies, authors are required to sign and submit a completed “IEEE Copyright
and Consent Form” prior to publication by the IEEE.
The IEEE recommends authors to use an effective electronic copyright

form (eCF) tool within the ScholarOne Manuscripts system. You will be
redirected to the “IEEE Electronic Copyright Form” wizard at the end of
your original submission; please simply sign the eCF by typing your name
at the proper location and click on the “Submit” button.

Correspondence items are short disclosures with a

meaning of a single technical point, or provide brief comments on material
previously published in the TRANSACTIONS. These items may not exceed 12
pages in double-spaced format (3 pages for Comments), using 11 point type,
with margins of 1 inch minimum on all sides, and including: title, names and
contact information for authors, abstract, text, references, and an appropriate
number of illustrations and/or tables. Correspondence items are submitted in
the same way as regular manuscripts (see “NewManuscript Submission” above
for instructions).

Papers published on or after 1 January 2007 can now
be up to 10 pages, and any paper in excess of 10 pages will be subject to over
length page charges. The IEEE Signal Processing Society has determined
that the standard manuscript length shall be no more than 10 published pages
(double-column format, 10 point type) for a regular submission, or 6 published
pages (9 point type) for a Correspondence item, respectively. Manuscripts that
exceed these limits will incur mandatory over length page charges, as discussed
below. Since changes recommended as a result of peer review may require
additions to the manuscript, it is strongly recommended that you practice
economy in preparing original submissions.
Exceptions to the 30-page (regular paper) or 12-page (Correspondences)

manuscript length may, under extraordinary circumstances, be granted by the
Editor-in-Chief. However, such exception does not obviate your requirement to
pay any and all over length or additional charges that attach to the manuscript.

Authors of rejected
manuscripts are allowed to resubmit their manuscripts only once. The Signal
Processing Society strongly discourages resubmission of rejected manuscripts
more than once. At the time of submission, you will be asked whether you con-
sider your manuscript to be a new submission or a resubmission of an earlier
rejected manuscript. If you choose to submit a new version of your manuscript,
you will be asked to submit supporting documents detailing how your new ver-
sion addresses all of the reviewers’ comments.
Full details of the resubmission process can be found in the Signal Processing

Society “Policy andProceduresManual” at http://www.signalprocessingsociety.
org/about/governance/policy-procedure/. Also, please refer to the decision letter
andyourAuthorCenter on theon-line submission system.

Author Misconduct Policy: Plagiarism includes copying someone else’s work
without appropriate credit, using someone else’s work without clear delineation
of citation, and the uncited reuse of an authors previously published work that
also involves other authors. Plagiarism is unacceptable.
Self-plagiarism involves the verbatim copying or reuse of an authors own

prior work without appropriate citation; it is also unacceptable. Self-plagiarism
includes duplicate submission of a single journal manuscript to two different
journals, and submission of two different journal manuscripts which overlap
substantially in language or technical contribution.
Authors may only submit original work that has not appeared elsewhere in a

journal publication, nor is under review for another journal publication. Limited
overlap with prior journal publications with a common author is allowed only
if it is necessary for the readability of the paper. If authors have used their own
previously published work as a basis for a new submission, they are required

fers substantively novel contributions beyond those of the previously published
work.
It is acceptable for conference papers to be used as the basis for a more fully

developed journal submission. Still, authors are required to cite related prior
work; the papers cannot be identical; and the journal publication must include
novel aspects.
Author Misconduct Procedures: The procedures that will be used by the

Signal Processing Society in the investigation of author misconduct allegations
are described in the IEEE SPS Policies and Procedures Manual.
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Author Misconduct Sanctions: The IEEE Signal Processing Society will
apply the following sanctions in any case of plagiarism, or in cases of
self-plagiarism that involve an overlap of more than 25% with another journal
manuscript:
1) immediate rejection of the manuscript in question;
2) immediate withdrawal of all other submitted manuscripts by any of the
authors, submitted to any of the Society’s publications (journals, con-
ferences, workshops), except for manuscripts that also involve innocent
co-authors; immediate withdrawal of all other submitted manuscripts by
any of the authors, submitted to any of the Society’s publications (jour-
nals, conferences, workshops), except for manuscripts that also involve
innocent co-authors;

3) prohibition against each of the authors for any new submissions, either in-
dividually, in combination with the authors of the plagiarizing manuscript,
or in combination with new co-authors, to all of the Society’s publications
(journals, conferences, workshops). The prohibition shall continue for one
year from notice of suspension.

Further, plagiarism and self-plagiarism may also be actionable by the IEEE
under the rules of Member Conduct.

Authors are encouraged to prepare manuscripts employing the on-line style

are available on the web at http://www.ieee.org/publications_standards/publi-
cations/authors/authors_journals.html#sect2 under “Template for all Transac-
tions.” (LaTeX and MS Word).
Authors using LaTeX: the two PDF versions of the manuscript needed for

document is generated by including \documentclass[11pt,draftcls,onecolumn]

double-column document for estimating the publication page charges via
\documentclass[10pt,twocolumn,twoside]{IEEEtran} for a regular submission,
or \documentclass[9pt,twocolumn,twoside]{IEEEtran} for a Correspondence
item.

Title page and abstract:
title, names and contact information for all authors (full mailing address, in-

An asterisk * should be placed next to the name of the Corresponding Au-
thor who will serve as the main point of contact for the manuscript during
the review and publication processes.
An abstract should have not more than 200 words for a regular paper,

or 50 words for a Correspondence item. The abstract should indicate
the scope of the paper or Correspondence, and summarize the author’s
conclusions. This will make the abstract, by itself, a useful tool for
information retrieval.
EDICS:

EDICS published online at http://www.signalprocessingsociety.org/publi-
cations/periodicals/tsp/TSP-EDICS/

mission of a newmanuscript, please choose the EDICS categories that best
suit your manuscript. Failure to do so will likely result in a delay of the peer
review process.

abstract page—of the manuscript.
Illustrations and tables:
intelligible without requiring reference to the text. Illustrations/tables may
be worked into the text of a newly-submitted manuscript, or placed at the

tables must be submitted separately and not interwoven with the text.)

is understandable.
In preparing your illustrations, note that in the printing process, most

illustrations are reduced to single-column width to conserve space. This
may result in as much as a 4:1 reduction from the original. Therefore, make
sure that all words are in a type size that will reduce to a minimum of
9 points or 3/16 inch high in the printed version. Only the major grid lines
on graphs should be indicated.

This TRANSACTIONS follows the practices of the IEEE
on units and abbreviations, as outlined in the Institute’s published
standards. See http://www.ieee.org/portal/cms_docs_iportals/iportals/pub-
lications/authors/transjnl/auinfo07.pdf for details.
Mathematics: All mathematical expressions must be legible. Do not give
derivations that are easily found in the literature; merely cite the reference.

Upon formal acceptance of a manuscript for publication, instructions for

sponding Author. Finalized manuscripts should be prepared in LaTeX or MS

http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect2.

setup.
RANSACTIONS, the name of

the author, and the software used to format the manuscript.

(although this is acceptable for your initial submission). If submitting on

text, but include callouts like “(a),” “(b).”

Powerpoint, Excel or PDF.Not acceptable is GIF, JPEG,WMF, PNG,BMP
or any other format (JPEG is accepted for author photographs only). The
provided resolution needs to be at least 600 dpi (400 dpi for color).

note that this will be at the expense of the author. Without other indica-
tions, color graphics will appear in color in the online version, but will be
converted to grayscale in the print version.

Additional instructions for preparing, verifying the quality, and submitting
graphics are available via http://www.ieee.org/publications_standards/publica-
tions/ authors/authors_journals.html.

http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect6 under “Multimedia.” To make your work reproducible by
others, the TRANSACTIONS

Upon acceptance of a manuscript for publication,
the author(s) or his/her/their company or institution will be asked to pay a charge

that comprise the standard length (six pages, in the case of Correspondences).
Mandatory Page Charges. The author(s) or his/her/their company or insti-

pages for regular papers and six published pages for correspondence items.
These are mandatory page charges and the author(s) will be held responsible

ingness to pay these charges simply by submitting his/her/their manuscript to
the TRANSACTIONS. The Publisher holds the right to withhold publication under
any circumstance, as well as publication of the current or future submissions of
authors who have outstanding mandatory page charge debt.
Color Charges.

in the hardcopy version in grayscale, and the author is responsible that the cor-

sive, and all charges for color are the responsibility of the author. The estimated

preparation charges which may be estimated as follows: color reproductions
on four or fewer pages of the manuscript: a total of approximately $1045; color

color reproductions on nine through 12 pages: a total of approximately $3135,
and so on. Payment of fees on color reproduction is not negotiable or voluntary,
and the author’s agreement to publish the manuscript in the TRANSACTIONS is
considered acceptance of this requirement.
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