Mathematical optimization

(mathematical) optimization problem

minimize  fo(x)
subject to  fi(z) <b;, i=1,....m

e r = (x1,...,x,): optimization variables
e fo:R" — R: objective function

e f;:R" - R,i=1,...,m: constraint functions

optimal solution z* has smallest value of fy among all vectors that

satisfy the constraints
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Solving optimization problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

e |east-squares problems
e linear programming problems

e convex optimization problems
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Least-squares

minimize [|Ax — b||3

solving least-squares problems

e analytical solution: a* = (AT A)~1 AT}

e reliable and efficient algorithms and software

e computation time proportional to n2k (A € R**™); less if structured

e a mature technology

using least-squares

e least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear programming

minimize ¢!z

subject to alx <b;, i=1,...,m
solving linear programs

e no analytical formula for solution
e reliable and efficient algorithms and software
e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving ¢1- or {,-norms, piecewise-linear functions)
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Convex optimization problem

minimize  fo(z)
subject to  fi(z) <b;, i=1,....m

e objective and constraint functions are convex:

filax + By) < afi(z) + Bfi(y)
fa+8=1a>0 6>0

e includes least-squares problems and linear programs as special cases

Introduction
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solving convex optimization problems

e no analytical solution
e reliable and efficient algorithms

e computation time (roughly) proportional to max{n?, n*m, F'}, where F
is cost of evaluating f;'s and their first and second derivatives

e almost a technology

using convex optimization

e often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization
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Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

e find a point that minimizes f; among feasible points near it
e fast, can handle large problems

e require initial guess

e provide no information about distance to (global) optimum

global optimization methods
e find the (global) solution

e worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Introduction

1-14



Brief history of convex optimization

theory (convex analysis): cal900-1970

algorithms

e 1947: simplex algorithm for linear programming (Dantzig)

e 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
e 1970s: ellipsoid method and other subgradient methods

e 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

e late 1980s—now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
e before 1990: mostly in operations research; few in engineering

e since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . .. ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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Affine set

line through x1, x5: all points

r=0x1+ (1 —0)xs (0 € R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Az = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

line segment between x; and x5: all points
r=0x1+ (1 —0)x
with 0 < 0 <1
convex set: contains line segment between any two points in the set
r,10€C, 0<0<1 = HOxr1+(1—-0)xxeC’

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of z1,. .., xx: any point x of the form
562(911’1—|—(925132—|—“'—|—(9k£€k

with 0 4+---+0,=1,0; >0

convex hull conv S: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x; and z3: any point of the form
r = 01$1 + (92562

with 8; >0, 65, > 0

L1

i)

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {z | alx = b} (a # 0)

Lo

a

T
™ a x> b
alez <b

e a Is the normal vector

e hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center x. and radius r:

B(we,r) = {2 | |z = 2clla <7} = {@e +ru [ lulla < 1}

ellipsoid: set of the form
{z](x—z) P2 —z;) <1}

with P € S, (i.e., P symmetric positive definite)

other representation: {x.+ Au | ||ul|2 < 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function || - || that satisfies

o |lzll = 0;

z|| =0 if and only if x =0
o |tx|| = |t|||z] for t € R
o llz+yl <zl + 1yl

notation: || - || is general (unspecified) norm; || - ||symb is particular norm

norm ball with center z. and radius r: {z | ||z — x.|| < r}

norm cone: {(x,t) | ||z| <t}

Euclidean norm cone is called second-
order cone

=o

norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities
Ax < b, Cx=d

(A e R™™" C e RP*" < is componentwise inequality)

ai ao

as
as
a4

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

e S” is set of symmetric n X n matrices

o S ={X €S"| X = 0}: positive semidefinite n x n matrices
XeS! <= 2T X2z >0 for all 2

S" is a convex cone
_|_

e ST, ={X €S"| X > 0}: positive definite n X n matrices
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Operations that preserve convexity

practical methods for establishing convexity of a set
1. apply definition

r,10€C;, 0<0<1 = Ox1+(1—-0)xeC’

2. show that C' is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

® intersection

e affine functions

e perspective function

e linear-fractional functions
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Intersection

the intersection of (any number of ) convex sets is convex
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Affine function

suppose f : R" — R is affine (f(z) = Az + b with A € R™”", b € R™)
e the image of a convex set under f is convex

S CR"convex = f(S)={f(z)|x €S} convex

e the inverse image f~!(C) of a convex set under f is convex

C CR™convex = fHC)={xcR"|f(x)ec C} convex

Convex sets 2-13



Perspective and linear-fractional function

n

perspective function P : R"t! — R™:
P(x,t) = x/t, dom P = {(z,t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : R" — R™:

Az +0b

—m, domf:{l’|CT$—|—d>O}

f(z)

images and inverse images of convex sets under linear-fractional functions
are convex
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Definition
f:R"™ — R is convex if dom f is a convex set and

flz+ (1—0)y) <O0f(z)+(1-0)f(y)

forall z,y edom f, 0 <60 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

flOz +(1=0)y) <O0f(x)+(1-0)f(y)

forxz,ycdomf, x#y, 0<6<1

Convex functions
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Examples on R

convex:
e affine: ax +bon R, forany a,b € R

e exponential: e**, for any a € R

e powers: z¥on Ry, fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: x*on R, for0 < a <1

e logarithm: logx on R,
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Examples on R"” and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(z) = alx + b

o norms: ||z, = (1, |?) /7 for p > 1;

T||oo = maxy |z

examples on R™™" (m x n matrices)

e affine function

i=1 j=1

e spectral (maximum singular value) norm

f(X) — HXHQ = O‘maX(X) — ()\maX(XTX))l/Q
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Restriction of a convex function to a line

f:R™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t|x+tv € dom f}

is convex (in t) for any x € dom f, v € R"

can check convexity of f by checking convexity of functions of one variable

example. f:S" — R with f(X) =logdet X, dom f =S" |

g(t) = logdet(X +tV) log det X + logdet (I + tX—1/2VX—1/2)

— logdet X + Z log(1 4 tA;)
i=1

where ); are the eigenvalues of X ~1/2V X ~1/2

g is concave in t (for any choice of X = 0, V'); hence f is concave
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Extended-value extension

extended-value extension f of f is

~

f(zx)=f(z), z€domf,  f(z)=o00, x¢domf

often simplifies notation; for example, the condition

~

0<0<1 = [fllz+(1-0)y) <0f(x)+(1-0)f(y)
(as an inequality in RU {c0}), means the same as the two conditions

e dom f is convex

e for x,y € dom f,
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First-order condition

f is differentiable if dom f is open and the gradient

_(01@) 0f(x) S
Vi) = ( Or;  Oxy '~ Ox, )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > fx)+Vflx)'(y—z) forall z,y € dom f

f(y)
fl@)+ V) (y — =)

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V2f(z) € S”,

_ 9P f(x)

2 L=
v f(x)w &zziﬁazj’

1,7=1,...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(z) =0 forall z € dom f

o if V2f(z) = 0 for all z € dom f, then f is strictly convex
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Examples

x) = (1/2)z" Pz + ¢z + r (with P € S™)

(

f(z)

quadratic function: f

V3 f(z)

= Px + q,

V

convex if P >0

| Az — b||3

least-squares objective: f(x)

convex (for any A)

27
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quadratic-over-linear: f(z,y) = 22/y
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/

convex for y > 0
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Jensen’s inequality

basic inequality: if f is convex, then for 0 < 6 <1,

flz+ (1 =0)y) <0f(z)+(1—-0)f(y)

extension: if f is convex, then

f(Ez) < Ef(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z =z) =0, prob(z=y)=1-10
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective

Convex functions
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Positive weighted sum & composition with affine function

nonnegative multiple: af is convex if f is convex, a > 0
sum: f1 + fo convex if f1, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex

examples

e piecewise-linear function: f(r) = max;—1 . n(alx + b;) is convex

e sum of r largest components of x € R":
f(@) = 2py+ 2 + -+ 2

is convex (xy; is ith largest component of x)
proof:

flx) =max{z; +zi,+ - +x;, |1 <i1 <ia < - <ip <n}
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Pointwise supremum

if f(z,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

IS convex
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Composition with scalar functions

composition of g : R — R and h: R — R:

. .. g convex, h convex, h nondecreasing
f is convex if ~ _ _
g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h)
f'(x) = h"(g(x))g'(x)* + ' (g(x))g" (x)
e note: monotonicity must hold for extended-value extension h

examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition

composition of ¢ : R® = R* and h : R* = R:

f(CC) — h(g(x)) — h(Ql(x)ag2(x)7 T 7gk(x)>

. .. g; convex, h convex, h nondecreasing in each argument
f is convex if ~

g; concave, h convex, h nonincreasing in each argument

examples
e > " loggi(x) is concave if g; are concave and positive

e log> " expg;(x) is convex if g; are convex
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Minimization
if f(x,y) is convex in (x,y) and C'is a convex set, then

g(z) = yiggf(:v, Y)

IS convex

examples

e distance to a set: dist(x,S) = inf,cs ||z — y|| is convex if S is convex
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Perspective

the perspective of a function f : R®™ — R is the function ¢ : R” x R — R,
g(a,t) = tf(xft),  domg={(z,t)| 2/t € dom, t >0}

g is convex if f is convex
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The conjugate function

the conjugate of a function f is

fy)= sup (y'z— f(z))

rxedom f

e f*is convex (even if f is not)
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:
f0x+(1=0)y) > f(x)’f(y)' ™" for0<o<1

f is log-convex if log f is convex
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Optimization problem in standard form

minimize  fo(z)
subject to  fi(x) <

e © € R" is the optimization variable
e fo: R" — R is the objective or cost function
e /;:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions
optimal value:
p* =inf{fo(z) | fi(x) <0, i=1,...,m, hi(x) =0, i1 =1,...,p}

e p* = ¢ if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below

Convex optimization problems



Optimal and locally optimal points

x is feasible if € dom f; and it satisfies the constraints
a feasible x is optimal if fy(x) = p*; X,pt is the set of optimal points

x is locally optimal if there is an R > 0 such that = is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,....,m, hi(z)=0, i=1,...

Iz =zl < R

examples (with n =1, m = p = 0)

o fo(r)=1/x, dom fy =R, : p* =0, no optimal point

e fo(r)=—logx, dom fy =R,,: p* = —

e fo(r)==xlogx, dom fy =Ry : p*=—1/e, x = 1/e is optimal
e fo(x) =a°—3x, p* = —o0, local optimum at z =1

Convex optimization problems



Implicit constraints

the standard form optimization problem has an implicit constraint
m p
xeD= ﬂdomfi N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Zle log(b; — alx)

is an unconstrained problem with implicit constraints a!z < b;
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Feasibility problem

find T
subject to  fi(z) <0, i=1,...,m
hz(x) — 07 1 =1, 5D

can be considered a special case of the general problem with fo(x) = 0:

minimize 0

e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo Iif constraints are infeasible

Convex optimization problems



Convex optimization problem

standard form convex optimization problem
minimize  fo(x)
subject to fz(as) i=1,...,m
a; aj—bz, r1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine

often written as

minimize  fo(x)
subject to fz( ) <0, i=1,....m
Ax =0

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(x) = 27 + 23
subject to  fi(z) = x1/(1+23) <0
e fy is convex; feasible set {(x1,x2) | x1 = —x2 < 0} is convex

e not a convex problem (according to our definition): f7 is not convex, hq
is not affine

e equivalent (but not identical) to the convex problem
minimize 2% + 23

subjectto x1 <0
xr1 + Io9 = 0

Convex optimization problems 4-7



Local and global optima

any locally optimal point of a convex problem is (globally) optimal
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Optimality criterion for differentiable f

x is optimal if and only if it is feasible and

Vfolx) ' (y —x) >0 for all feasible y

Convex optimization problems



e unconstrained problem: x is optimal if and only if

xr € dom fy, Vfolx)=0

e equality constrained problem
minimize fo(x) subjectto Ax =10
x is optimal if and only if there exists a v such that

r € dom fo, Ax = b, Vio(x)+Atv =0

¢ minimization over nonnegative orthant
minimize fo(x) subjectto x>0

x is optimal if and only if

Vfo(z); >0 z;=0

—
v €domfo,  zz0, {vfo(:v)z:o i > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

e eliminating equality constraints
minimize  fy(x)
subject to fz( )<0, i=1,....,m
Ax =10
Is equivalent to

minimize (over z) fo(Fz + xg)
subject to filFz4+x9) <0, i=1,...,m

where F' and z( are such that

Ar=b <= x = Fz+ xy for some z

Convex optimization problems 4-11



e introducing equality constraints

minimize  fo(Aoz + bo)
subject to  f;(A;x+b;) <0, i=1,...

Is equivalent to

minimize (over z, v;)  fo(yo)

subject to fily;) <0, i=1,...,m

yz:AZI—I—bZ, izO,l,...,m

e introducing slack variables for linear inequalities

minimize  fo(z)
subject to alx <b;, i=1,...,m

Is equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=0b; i=1,...

Convex optimization problems
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e epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to folx) =t <0
fz( , 1=1,...,m

) -
730

@l/\

Ax

e mMinimizing over some variables

minimize  fo(x1, 72)
subject to  fi(xz1) <0, i=1,...,m

Is equivalent to

minimize  fo(z1)
subject to  fi(x1) <0, 1=1,...,m

where fo(z1) = infy, fo(z1, z2)
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Linear program (LP)

minimize ¢z 4+d
subject to Gax <X h
Ax =D
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron
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Linear-fractional program

minimize  fo(z)
subject to Gx X h

Ax =10
linear-fractional program
T d
folz) = % dom fy(z) = {x | T + f > 0}

e a quasiconvex optimization problem; can be solved by bisection

e also equivalent to the LP (variables y, z)

minimize ¢’y + dz
subject to Gy =< hz
Ay = bz
ely+ fz=1
z>0

Convex optimization problems
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Quadratic program (QP)

minimize  (1/2)z' Pz +q¢lz +r
subject to Gz X h
Ax =10

e P c S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex optimization problems
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Quadratically constrained quadratic program (QCQP)

minimize  (1/2)z! Pox + ¢z + 79
subject to  (1/2)x'Pox+qlz+r; <0, i=1,...,m
Ax =10

e P, € S”'; objective and constraints are convex quadratic

o if P,..., P, €S _, feasible region is intersection of m ellipsoids and
an affine set
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Second-order cone programming

minimize  flax
subject to ||z +bill2 < clz+d;, i=1,...,m
Fr=g
(A; € R"*" F € RP™™)

e inequalities are called second-order cone (SOC) constraints:

(Asz + by, C;-rw + d;) € second-order cone in R"it1
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Geometric programming

monomial function

ai, a2 an

f(x) = cxitay? - - - xon, dom f =R

with ¢ > 0; exponent a; can be any real number
posynomial function: sum of monomials

K

flz) =) eraf™ay?-agnk,  domf =R,
k=1

geometric program (GP)

minimize  fo(z)
subject to  fi(z) <

with f; posynomial, h; monomial
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Geometric program in convex form

change variables to y; = log z;, and take logarithm of cost, constraints

e monomial f(xz) = cx{'---z% transforms to
log f(e¥t,...,e"") =aly +b (b =logc)

. K
e posynomial f(z) =, cxx]Fas?* - - xn"* transforms to

K
log f(e¥t,...,e¥") = log (Z ea£y+bk> (b = log ci)
k=1

e geometric program transforms to convex problem

minimize log Zle exp(al,y + b%)>
subject to log Zle exp(aly + bzk)> <0, 1=1,....m
Gy+d=20
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Semidefinite program (SDP)

minimize ¢!z

subject to x1Fy + a2l + -+ 2, F,+ G X0
Az = b

with I}, G € S”

e inequality constraint is called linear matrix inequality (LMI)
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Eigenvalue minimization

minimize Apax(A(x))
where A(z) = Ao + z1 41 + - - + 2, A,, (with given 4; € S¥)
equivalent SDP

minimize ¢
subject to A(x) < tI

e variables z € R", t € R

e follows from
Amax(A) <t <— A=<tI
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Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  f;(z) <

variable z € R", domain D, optimal value p*

Lagrangian: L : R” x R™ x R”P - R, with dom L =D x R™ x R?,

Lz, \,v) —|—Z)\ fi(x -|—sz'hi($)
i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e 1; is Lagrange multiplier associated with h;(z) = 0

Duality
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Lagrange dual function

Lagrange dual function: ¢ : R x R — R,

g(A\,v) = inf L(z,\,v)

xz€eD
=1 =1

g is concave, can be —oo for some A, v

*

lower bound property: if A\ = 0, then g(\,v) <p

Duality
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Least-norm solution of linear equations

minimize zlx

subject to Ax =1b
dual function
e Lagrangianis L(z,v) = 212z + v1(Az — b)

e to minimize L over x, set gradient equal to zero:

Vol(z,v) =22+ A'v=0 =— z=—(1/2)A"v

e plug in in L to obtain g:
1
g(v) = L((-1/2)ATv,v) = —ZI/TAATV — bl
a concave function of v

lower bound property: p* > —(1/4)vT AATY — blv for all v
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Standard form LP

minimize ¢!z

subjectto Ar=b, x>0
dual function
e Lagrangian is
Lz, \v) = cao+vi(Az—-b) - o
= b+ (c+ATv—N'x
e [ is affine in z, hence

by ATy —AN+c¢=0
— 00 otherwise

g\, v) =1inf L(z,\,v) = {
g is linear on affine domain {(\,v) | AYv — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blv if ATv4+¢>0
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Lagrange dual and conjugate function

minimize  fo(x)
subjectto Ax <b, Czx=d

dual function

g\, v)

inf . (fo(x) + (A"X+C"v) 'z —b" XN —d'v)
redom [

= —fr(=AT'N=CTv)—bvI'X—d'v

e recall definition of conjugate f*(y) = Sup,cqom s (' = — f())

e simplifies derivation of dual if conjugate of fy is known
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The dual problem

Lagrange dual problem

maximize g(\,v)
subjectto A >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (A\,) € dom g

e often simplified by making implicit constraint (A, ) € dom g explicit

example: standard form LP and its dual (page 5-5)

minimize clx maximize —blv
subject to Az =0b subject to ATv 4+ ¢ >0
x>0
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Weak and strong duality
weak duality: d* < p*

e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Complementary slackness

*

assume strong duality holds, x* is primal optimal, (A*, v*) is dual optimal

inf (fo<x> RHORDS v:hi<:c>>

< fol@) D) N filat) + > vihi(a?)
1=1 1=1
< fo(z")

fo(z") = g(A*,v7)

hence, the two inequalities hold with equality
e x* minimizes L(xz, \*,v*)

o \'fi(x*) =0fori=1,...,m (known as complementary slackness):

N> 0= fi(z*) =0,  filz") <0= \ =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: f;(z) <0,i=1,...,m, hi(x) =0,1=1,...,p
2. dual constraints: A = 0
3. complementary slackness: \;fi(z) =0,1=1,...,m

4. gradient of Lagrangian with respect to x vanishes:

V fo(z +§:AVﬂ +§:%Vh

from page 5-17: if strong duality holds and x, A, v are optimal, then they
must satisfy the KK'T conditions
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KKT conditions for convex problem

~

if x, A, U satisfy KKT for a convex problem, then they are optimal:

e from complementary slackness: fo(%) = L(Z, A, )

~

hence, fo() = g(A, )
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