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Elementary Discrete-time Signals

1. Unit sample sequence

δ(n) =
{

1, n = 0
0, n ̸= 0

2. Unit step signal

u(n) =
{

1, n ≥ 0
0, n < 0

3. Unit ramp signal

ur(n) =
{

n, n ≥ 0
0, n < 0

4. Exponential signal

x(n) = an = (rejθ)n = rnejθn

Classification of Discrete-time Signals

Energy signals vs. power signals

Energy: E =
∑∞

n=−∞ |x(n)|2.

If E is finite, 0 < E < ∞, x(n) is energy signal.

Power: P = limN→∞
1

2N+1
∑N

n=−N |x(n)|2 = limN→∞
1

2N+1EN .

E finite ⇒ P = 0.

If P is finite, 0 < P < ∞, x(n) is power signal.



Classification of Discrete-time Signals

Periodic signals vs. aperiodic signals

x(n) is periodic with period N > 0 iff

x(n + N) = x(n), ∀n.

The smallest N is the fundamental period.

e.g., x(n) = A sin(2πfn), f = k
N .

Power: P = 1
N

∑N−1
n=0 |x(n)|2.

Therefore, periodic signals are power signals.

Classification of Discrete-time Signals

Symmetric (even) vs. antisymmetric (odd) signals

Even: x(−n) = x(n)

Odd: x(−n) = −x(n)

Any signal can be expressed as a sum of an even signal and an odd
signal.

x(n) = xe(n) + xo(n)

Proof.

xe(n) = 1
2 [x(n) + x(−n)] and xo(n) = 1

2 [x(n) − x(−n)].



Simple Manipulations of Discrete-time Signals

Time-delay: TDk[x(n)] = x(n − k), k > 0.

Folding: FD[x(n)] = x(−n).

Amplitude scaling: y(n) = Ax(n), −∞ < n < ∞.

Sum: y(n) = x1(n) + x2(n).

Product: y(n) = x1(n)x2(n). (sample-to-sample basis)

Discrete-time Systems

Discrete-time System

y(n) = T [x(n)]



Input-Output Description of Systems

x(n) →T y(n) y(n) = T [x(n)]

For example, an accumulator:

y(n) =
n∑

k=−∞
x(k)

= x(n) + x(n − 1) + x(n − 2) + · · ·

=
n−1∑

k=−∞
x(k) + x(n)

= y(n − 1) + x(n)

Initially relaxed at n0: y(n0 − 1) = 0.

Block Diagram Representation of Discrete-time Systems
Adder

Constant Multiplier

Signal Multiplier



Block Diagram Representation of Discrete-time Systems

Unit Delay Element

Unit Advance Element

Classification of Discrete-time Systems

Static vs. dynamic systems

Static (memoryless):

y(n) = αx(n)
y(n) = n2x(n) + βx2(n)

Dynamic:

y(n) = x(n) + 3x(n − 1)

y(n) =
∞∑

k=0
x(n − k)



Classification of Discrete-time Systems

Time-invariant vs. time-variant systems

Time-invariant:

x(n) →T y(n) implies x(n − k) →T y(n − k).

y(n, k) = T [x(n − k)] = y(n − k)

Classification of Discrete-time Systems
Linear vs. nonlinear systems

Linear system iff

T [α1x1(n) + α2x2(n)] = α1T [x1(n)] + α2T [x2(n)]

Superposition: Scaling (multiplicative) property + Additive
property



Classification of Discrete-time Systems

Causal vs. noncausal systems

Causal system iff

y(n) = T [x(n), x(n − 1), x(n − 2), · · · ]

Classification of Discrete-time Systems

Stable vs. unstable systems

Bounded input - bounded output (BIBO) stable iff

|x(n)| ≤ Mx < ∞ ⇒ |y(n)| ≤ My < ∞, ∀n.



Interconnection of Discrete-time Systems
Cascade:

y(n) = T2[T1[x(n)]], Tc = T2T1

In general, T2T1 ̸= T1T2.

Parallel:

y(n) = T1[x(n)] + T2[x(n)], Tp = T1 + T2

Techniques for Analysis of Linear Time-invariant Systems

For LTI systems, a general form of the input-output relationship.

y(n) = −
N∑

k=1
aky(n − k) +

M∑
k=0

bkx(n − k)

A difference equation



Techniques for Analysis of Linear Time-invariant Systems
We use x(n) =

∑
k ckxk(n), where xk(n) are the elementary signal

components.

Suppose that yk(n) = T [xk(n)], we have

y(n) = T [x(n)] = T
[∑

k

ckxk(n)
]

=
∑

k

ckT [xk(n)] =
∑

k

ckyk(n)

It is chosen that, e.g.,

xk = ejωkn, k = 0, 1, . . . , N − 1.

where, ωk = 2πk
N . {ωk} are harmonically related. 2π

N is the
fundamental frequency.

Resolution of a Discrete-time Signal into Impulses

We choose

xk(n) = δ(n − k)

x(n)δ(n − k) = x(k)δ(n − k)

Therefore,

x(n) =
∞∑

k=−∞
x(k)δ(n − k)

=
∞∑

k=−∞
x(k)xk(n)



Resolution of a Discrete-time Signal into Impulses

Response of LTI Systems to Arbitrary Inputs

h(n, k) ≡ T [δ(n − k)]

We use x(n) =
∑∞

k=−∞ x(k)δ(n − k).

y(n) = T [x(n)] =
∞∑

k=−∞
x(k)T [δ(n − k)]

=
∞∑

k=−∞
x(k)h(n, k)

Time-invariant:
h(n) = T [δ(n)] ⇒ h(n, k) = h(n − k) = T [δ(n − k)]

y(n) =
∞∑

k=−∞
x(k)h(n − k)

The convolution sum



Properties of Convolution and Interconnection of Systems

The convolution sum

y(n) = x(n) ⊗ h(n)

=
∞∑

k=−∞
x(k)h(n − k)

=
∞∑

k=−∞
h(k)x(n − k)

= h(n) ⊗ x(n)

Properties of Convolution and Interconnection of Systems

Identity and Shifting Properties

y(n) = x(n) ⊗ δ(n) = x(n)
y(n − k) = x(n) ⊗ δ(n − k) = x(n − k)



Properties of Convolution and Interconnection of Systems
Commutative Law

x(n) ⊗ h(n) = h(n) ⊗ x(n)

Associative Law

[x(n) ⊗ h1(n)] ⊗ h2(n) = x(n) ⊗ [h1(n) ⊗ h2(n)]

Properties of Convolution and Interconnection of Systems

Distributive Law

x(n) ⊗ [h1(n) + h2(n)] = x(n) ⊗ h1(n) + x(n) ⊗ h2(n)



Causal Linear Time-Invariant Systems

y(n0) =
∞∑

k=−∞
h(k)x(n0 − k)

=
∞∑

k=0
h(k)x(n0 − k) +

−1∑
k=−∞

h(k)x(n0 − k)︸ ︷︷ ︸
ỹ(n)

The second part ỹ(n) depends on the future (w.r.t. n0) inputs
x(n0 + 1), x(n0 + 2), . . . It has to be zero for a causal LTI system.

Therefore, the impulse response of the system must satisfy the
condition

h(n) = 0, n < 0

An LTI system is causal iff its impulse response is zero for negative
values of n.

Causal Linear Time-Invariant Systems

h(n) = 0, n < 0

y(n) =
∞∑

k=0
h(k)x(n − k)

=
n∑

k=−∞
x(k)h(n − k)



Stability of Linear Time-Invariant Systems

If x(n) is bounded, |x(n)| ≤ Mx < ∞, ∀n.

If y(n) is bounded, |y(n)| ≤ My < ∞, ∀n.

y(n) =
∞∑

k=−∞
h(k)x(n − k)

|y(n)| =

∣∣∣∣∣∣
∞∑

k=−∞
h(k)x(n − k)

∣∣∣∣∣∣
≤

∞∑
k=−∞

|h(k)||x(n − k)|

≤ Mx

∞∑
k=−∞

|h(k)|

Stability of Linear Time-Invariant Systems

We observe that, for |y(n)| < ∞, a sufficient condition is

∞∑
k=−∞

|h(k)| < ∞

It turns out this condition is not only sufficient but also necessary
to ensure the stability of the system.

A LTI system is stable iff its impulse response is absolutely
summable.



Systems with Finite-Duration and Infinite-Duration Impulse
Response

A finite-duration impulse response (FIR) system has an impulse
response that is zero outside of some finite time interval.

h(n) = 0, n < 0 and n ≥ M

y(n) =
M−1∑
k=0

h(k)x(n − k)

An infinite-duration impulse response (IIR) system has an
infinite-duration impulse response.

y(n) =
∞∑

k=0
h(k)x(n − k)

where causality is assumed.

Implementation of Discrete-time Systems

For example, a first-order system described by the linear
constant-coefficient difference equation.

y(n) = −a1y(n − 1) + b0x(n) + b1x(n − 1)

(1) Use a nonrecursive system followed by a recursive system:

v(n) = b0x(n) + b1x(n − 1)
y(n) = −a1y(n − 1) + v(n)

(2) Use a recursive system followed by a nonrecursive system:

w(n) = −a1w(n − 1) + x(n)
y(n) = b0w(n) + b1w(n − 1)



Implementation of Discrete-time Systems

Implementation of Discrete-time Systems

y(n) = −
N∑

k=1
aky(n − k) +

M∑
k=0

bkx(n − k)

(1) Direct form I structure:

v(n) =
M∑

k=0
bkx(n − k)

y(n) = −
N∑

k=1
aky(n − k) + v(n)



Direct Form I Structure

Implementation of Discrete-time Systems

y(n) = −
N∑

k=1
aky(n − k) +

M∑
k=0

bkx(n − k)

(2) Direct form II structure:

w(n) = −
N∑

k=1
akw(n − k) + x(n)

y(n) =
M∑

k=0
bkw(n − k)



Direct Form II Structure

Correlation of Discrete-time Signals

Crosscorrelation of sequences x(n) and y(n) is a sequence rxy(l)
defined as

rxy(l) =
∞∑

n=−∞
x(n)y(n − l), l = 0, ±1, ±2, . . .

=
∞∑

n=−∞
x(n + l)y(n), l = 0, ±1, ±2, . . .

where index l is the time shift or lag.

rxy(l) = ryx(−l)

rxy(l) = x(l) ⊗ y(−l)



Correlation of Discrete-time Signals

Autocorrelation of sequence x(n) is a sequence rxx(l) defined as

rxx(l) =
∞∑

n=−∞
x(n)x(n − l), l = 0, ±1, ±2, . . .

=
∞∑

n=−∞
x(n + l)x(n), l = 0, ±1, ±2, . . .

where index l is the time shift or lag.

rxx(l) = rxx(−l)

rxx(l) = x(l) ⊗ x(−l)

Properties of Autocorrelation and Crosscorrelation
Sequences

|rxx(l)| ≤ rxx(0) = Ex

|rxy(l)| ≤
√

rxx(0)ryy(0) =
√

ExEy

Normalized autocorrelation sequence:

ρxx(l) = rxx(l)
rxx(0) , |ρxx(l)| ≤ 1

Normalized crosscorrelation sequence:

ρxy(l) = rxy(l)√
rxx(0)ryy(0)

, |ρxy(l)| ≤ 1



Correlation of Periodic Sequences

Crosscorrelation:

rxy(l) = 1
N

N−1∑
n=0

x(n)y(n − l)

Autocorrelation:

rxx(l) = 1
N

N−1∑
n=0

x(n)x(n − l)

Correlation of Periodic Sequences

Example: Correlation is used to identify periodicity in an observed
physical signal that is corrupted by random noise/interference.

y(n) = x(n) + w(n)

We observe M samples of y(n), where M ≫ N .

ryy(l) = 1
M

M−1∑
n=0

y(n)y(n − l)

= 1
M

M−1∑
n=0

[x(n) + w(n)][x(n − l) + w(n − l)]

= rxx(l) + rxw(l) + rwx(l) + rww(l)



Correlation of Periodic Sequences

Example: Identify a hidden periodicity in the Wölfer sunspot
numbers in the 100-year period 1770-1869.

Input-Output Correlation Sequences

Crosscorrelation between the output and the input signal is

ryx(l) = y(l) ⊗ x(−l) = h(l) ⊗ [x(l) ⊗ x(−l)]
= h(l) ⊗ rxx(l)

Autocorrelation of the output signal is

ryy(l) = y(l) ⊗ y(−l)
= [h(l) ⊗ x(l)] ⊗ [h(−l) ⊗ x(−l)]
= [h(l) ⊗ h(−l)] ⊗ [x(l) ⊗ x(−l)]
= rhh(l) ⊗ rxx(l)

The autocorrelation rhh(l) of the impulse response h(n) exists if
the system is stable.
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