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Elementary Discrete-time Signals

1. Unit sample sequence

5(n) = { (1)
2. Unit step signal
3. Unit ramp signal

ur(n) = { g:

4. Exponential signal

z(n) = a" = (ref?)" = rrelfn

n —

n#0

n>0
n <0

Classification of Discrete-time Signals

Energy signals vs. power signals

Energy: E=>">° |x(n)|2

If E is finite, 0 < E < oo, x(n) is energy signal.

Power: P = limy o0 gy77 Lne—n [2(n)]* = imy—o0 g7 EN-

FE finite = P = 0.

If P is finite, 0 < P < oo, z(n) is power signal.



Classification of Discrete-time Signals

Periodic signals vs. aperiodic signals

x(n) is periodic with period N > 0 iff
z(n+ N) = x(n), Vn.

The smallest N is the fundamental period.

eg., z(n) = Asin(2rfn), f = £.

Power: P = + SV (n) 2,

Therefore, periodic signals are power signals.

Classification of Discrete-time Signals

Symmetric (even) vs. antisymmetric (odd) signals

Even: z(—n) = x(n)

Odd: z(—n) = —x(n)

Any signal can be expressed as a sum of an even signal and an odd
signal.
z(n) = xe(n) + xo(n)

Proof.
[z(n) — z(—n)].

N

Te(n) = %[az(n) + 2(—n)] and z,(n) =



Simple Manipulations of Discrete-time Signals

Time-delay: TDy[z(n)] = z(n — k), k > 0.
Folding: FD[x(n)] = 2(—n).

Amplitude scaling: y(n) = Az(n), —0o < n < 0.
Sum: y(n) = 1 (n) + z2(n).

Product: y(n) = x1(n)xa(n). (sample-to-sample basis)

Discrete-time Systems

Discrete-time System
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Input-Output Description of Systems

z(n) =" y(n) y(n) = Tla(n)]

For example, an accumulator:

y(n) = Y a(k)

k=—o0
= z(n)+zn—1)4+xz(n—2)+---

n—1

= Z z(k) + x(n)

k=—o0

= y(n—1)+z(n)

Initially relaxed at ng: y(ng — 1) = 0.

Block Diagram Representation of Discrete-time Systems

Adder

xq(n)

W y(n) =x(n) + x,(n)
x5(n)

Constant Multiplier

x(n) a y(n) = ax(n)

Signal Multiplier

x(n) /,—\\ y(n) =x,(n)x,(n)
X
oW

xs(n)



Block Diagram Representation of Discrete-time Systems

Unit Delay Element

x(n) y(n) =x(n—1)

—-_z—l_ N

Unit Advance Element

x(n) vin)=x(n+1)
>

Classification of Discrete-time Systems

Static vs. dynamic systems

Static (memoryless):

y(n) = az(n)
y(n) = n’z(n)+ Bz(n)

Dynamic:



Classification of Discrete-time Systems

Time-invariant vs. time-variant systems

Time-invariant:

z(n) =7 y(n) implies x(n—k) =7 y(n— k).

y(n, k) = Tlz(n - k)] = y(n — k)

Classification of Discrete-time Systems

Linear vs. nonlinear systems

Linear system iff

Tlorz1(n) + agze(n)] = a1 T[z1(n)] + aoT [x2(n)]

Superposition: Scaling (multiplicative) property + Additive

property
—m . .
xy(n) - /
1(n) [Tl 1
(S \




Classification of Discrete-time Systems

Causal vs. noncausal systems

Causal system iff

Classification of Discrete-time Systems

Stable vs. unstable systems

Bounded input - bounded output (BIBO) stable iff

lz(n)| < My < oo = |y(n)| < M, < oo, Vn.



Interconnection of Discrete-time Systems

Cascade:

y(n) =Tao[Tilz(n)]], Te=TT
In general, 7571 # T1i7Ts.

x(n) | »iln) Loy(n)
T L

Parallel:

yi0m) :
:
(n) 3 yaln)
yaln) 3
— g
i
T,

Techniques for Analysis of Linear Time-invariant Systems

For LTI systems, a general form of the input-output relationship.

N M
y(n) == ary(n—k)+ Y bpx(n — k)

A difference equation




Techniques for Analysis of Linear Time-invariant Systems

We use z(n) = >, cxxr(n), where xx(n) are the elementary signal
components.

Suppose that yi(n) = T [zr(n)], we have

y(n) = Tlz(n)] —T[Z Ckzwk(n)]
k

It is chosen that, e.g.,

Ty, = IR k=0,1,...,N —1.

where, wi = % {wi} are harmonically related. %T is the

fundamental frequency.

Resolution of a Discrete-time Signal into Impulses

We choose
wr(n) = o(n—k)
z(n)d(n—k) = a(k)d(n—k)
Therefore,
z(n) = kiox(k)a(n — k)

= > z(k)ar(n)

k=—oc0



Resolution of a Discrete-time Signal into Impulses

iiiiiii

Response of LTI Systems to Arbitrary Inputs

* & & & & & 5 & 2 . B 4 s s b

h(n,k) =T[0(n — k)]

Time-invariant:

h(n) =TI[d(n)] = h(n,k) = h(n — k) =T[5(n — k)]

The convolution sum




Properties of Convolution and Interconnection of Systems

The convolution sum

y(n) = z(n)®h(n)

oo

= Y az(k)h(n—k)
k=—00
oo
= > h(k)z(n—k)
k=—o00
= h(n)®z(n)
xl(n) e Vi) lii) = win)

Properties of Convolution and Interconnection of Systems

|dentity and Shifting Properties




Properties of Convolution and Interconnection of Systems

Commutative Law

z(n)®@h(n) = hn)z(n)

Associative Law

[z(n) @ hi(n)] @ ha(n) = x(n) ® [h1(n) @ ha(n)]

x(n) vin) xim) hin) = yin)

N I 7y KO S U
1 2

(a)

xln) |

| | yin) x(n)
—-—| Ir](n}l | h:(nJI

- -

(b)

yin)
s (my }——‘ hy () }——

Properties of Convolution and Interconnection of Systems

Distributive Law

z(n) @ [hi(n) + ha(n)] = x(n) @ h1(n) + 2(n) ® ha(n)

—| m |

x(n) * win) xin) hin) = yin)
( ) " “ Iy (n) + fhatn) o

L e hz(ﬂ}




Causal Linear Time-Invariant Systems

y(no) = Z h(k)z(no — k)

k=—o0

=Zh x(ng — k —I—Zh x(ng — k)

k=—0c0

A >

4(n)

The second part g(n) depends on the future (w.r.t. ng) inputs
x(ng + 1),z(ng + 2),... It has to be zero for a causal LTI system.

Therefore, the impulse response of the system must satisfy the
condition

h(n) =0, n<0

An LTI system is causal iff its impulse response is zero for negative
values of n.

Causal Linear Time-Invariant Systems

h(n)=0, n<0

y(n) = > h(k)z(n—k)

k=0

= > a(k)h(n—k)

k=—0o0



Stability of Linear Time-Invariant Systems

If z(n) is bounded, |z(n)| < M, < oo, Vn.

If y(n) is bounded, |y(n)| < M, < oo, Vn.

= > h(k)z(n—k)

k=—o0

> h(k)z(n — k)

k=—o0

oo

> |h(®)llz(n — k)|

k=—o0

< M, S k)

k=—o00

IA

Stability of Linear Time-Invariant Systems

We observe that, for |y(n)| < oo, a sufficient condition is

It turns out this condition is not only sufficient but also necessary

> |n(k)| < oo

k=—o0

to ensure the stability of the system.

A LTI system is stable iff its impulse response is absolutely

summable.



Systems with Finite-Duration and Infinite-Duration Impulse

Response

A finite-duration impulse response (FIR) system has an impulse
response that is zero outside of some finite time interval.

h(n) =0, n<0 and n>M

An infinite-duration impulse response (IIR) system has an
infinite-duration impulse response.

yn) = 3 h(k)e(n — k)
k=0

where causality is assumed.

Implementation of Discrete-time Systems

For example, a first-order system described by the linear
constant-coefficient difference equation.

y(n) = —ary(n — 1) + box(n) + byx(n — 1)
(1) Use a nonrecursive system followed by a recursive system:

v(n) = box(n)+ bix(n—1)
y(n) = —ary(n—1)+v(n)

(2) Use a recursive system followed by a nonrecursive system:

wn) = —aqw(n—1)+z(n)
y(n) = bow(n)+bjw(n—1)



Implementation of Discrete-time Systems

Implementation of Discrete-time Systems

N M
y(n) = — Z ary(n — k) + Z brx(n — k)
k=1 k=0
(1) Direct form | structure:
M
v(n) = ) brz(n—k)
k=0

N
y(n) = — Z ary(n — k) +v(n)
k=1



Direct Form | Structure

x(n) by C\\ win) /‘\\ yin)
I \ 4 L 4 ]
7L "‘

b =
O O]
1 -
by @ \/:: ~d
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Implementation of Discrete-time Systems

N M
y(n) = — Z ary(n — k) + Z brx(n — k)
k=1 k=0
(2) Direct form Il structure:
N
win) = =Y agw(n—k)+z(n)
k=1

M
y(n) = Z brw(n — k)
k=0



Direct Form Il Structure
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Correlation of Discrete-time Signals

Crosscorrelation of sequences z(n) and y(n) is a sequence 14, ({)

defined as
rey(l) = Z r(n)y(n —1), 1 =0,£1,£2,...

where index [ is the time shift or lag.

ray(l) = rya(=1)
ray (1) = (1) @ y(~1)



Correlation of Discrete-time Signals

Autocorrelation of sequence z(n) is a sequence 7,,(l) defined as

rea(l) = Y z(n)z(n—1), 1=0,%1,+£2,...
-
= > z(n+Dz(n), I=0,%1,£2,...

where index [ is the time shift or lag.

Toz(l) = ree(=1)
rez(l) = () ® x(=1)

Properties of Autocorrelation and Crosscorrelation

Sequences

|rwm(l)‘ < Tma:(o):E:v

Ty < \/7a0(0)ryy (0) = \/ELE,

Normalized autocorrelation sequence:

prsll) = 20 o] < 1

Normalized crosscorrelation sequence:

Txy(l)
ny(l) = ) ‘P:cy(l)‘ <1
\/Tm(())ryy(o)




Correlation of Periodic Sequences

Crosscorrelation:

1 N-1
ray(l) = 5 3 a(my(n— 1
n=0
Autocorrelation:
| N-1
Tez(l) = N 2 x(n)x(n —1)

Correlation of Periodic Sequences

Example: Correlation is used to identify periodicity in an observed
physical signal that is corrupted by random noise/interference.

y(n) = z(n) +w(n)

We observe M samples of y(n), where M > N.

1 M—-1
() = 37 2 ymyn—1)
n=0
1 M-1
= 27 2 [ +wm)]lz(n — 1) + win - 1)]

n—

0
= o) + 7ow®) + s (D) + ()



Correlation of Periodic Sequences

Example: ldentify a hidden periodicity in the Wolfer sunspot
numbers in the 100-year period 1770-1869.

Al

850 1870

Input-Output Correlation Sequences

Crosscorrelation between the output and the input signal is

rye(l) = y() @ x(=1) = h(l) & [2(]) @ 2(=1)]
= h(l) @ ree(l)

Autocorrelation of the output signal is

ryy(l) = y() ®y(=1)
= [h(l) @ z(D)] ® [R(=1) ® z(-1)]
[h(l) @ h(=1)] @ [z(l) ® z(—1)]
= Tha(l) @ Tz (l)

The autocorrelation 7, (1) of the impulse response h(n) exists if
the system is stable.



	Discrete-time Signals
	Discrete-time Systems
	Analysis of Discrete-time Linear Time-Invariant Systems
	Implementation of Discrete-time Systems
	Correlation of Discrete-time Signals

