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Figure: (a) Block Diagram of Baseband Communication Systems. (b)
Simplified Block Diagram.



Baseband Modulation / Baseband Line Coding

\;)\ The baseband signal
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) where {aj} are symbols, T
is bit duration (or symbol
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Baseband Modulation / Baseband Line Coding

The baseband transmitted signal

oo

s(t) = Z arg(t — kTy)

k=—o0

where g(t) is the pulse shaping filter at the transmitter.

The baseband received signal
z(t) = s(t) @ h(t)

where h(t) is the channel impulse response.

The output of receive-filter

y(t) = z(t) ® q(t)

where ¢(t) is the impulse response of receive-filter.



Baseband Pulse Shaping

Overall pulse shape - Transmitter filter, Linear
Communication Channel, Receiver filter

p(t) = g(t) @ h(t) @ q(t)

Fourier transform of the pulse

The transmit-pulse G(f) and the receive-filter Q(f) can
conserve the communication bandwidth.

Intersymbol Interference (ISI)

The receive-filter output y(t) is sampled synchronously with
the transmitter

o

y(iTy) = Y arpl(i — k)Ty)]

k=—0o0
Discrete convolution sum: y; = >"72 axpi—k

Assume that p(0) = V/E, where E is the transmitted signal
energy per symbol.

Therefore

oo

vi = VEa; + Z AfPi—k
k=—o00,k#1

~

g

intersymbol interference (ISI)



Nyquist Criterion for Zero ISI

The Nyquist's criterion for zero ISI

pizp(in)={ \/OE z;g

The optimum pulse shape is the sinc function

. V'E sin(27 Byt
popt(t) = \/Esmc(2BOt) — 27ri30t 0 )
where By = %Tb = %. (Nyquist bandwidth — minimum

transmission bandwidth for zero ISI.)

The Fourier transform of the optimum pulse is
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Figure: (a) Optimum pulse shape sinc function p(t). (b) Optimum filter
“brick-wall” P(f).

Time pulse function p(t) decreases as 1/|t|. — Slow rate of decay.



Raised-Cosine Pulse Spectrum

Flat portion, 0 < |f| < f1

Roll-off portion,
fi<|fl <2By - f1

(a) Raised-cosine pulse spectrum P(f). (b) Raise-cosine pulse p(t).

Raised-Cosine Pulse

Raised-cosine pulse spectrum

% 70§|f|<f1
— m(|f[=f
P(f) = %{14—608[%}} J1 < |fl <2By - fi
0 7230_f1§|f|

where the roll-off factor « =1 — f1/By.

Raised-cosine pulse (inverse Fourier transform of the
raised-cosine pulse spectrum)

cos(2raByt) )

p(t) = V'E sinc(2Bot) (1 1602 B2



Transmission Bandwidth Requirement

The transmission bandwidth required by using the
raised-cosine pulse spectrum is

Br =2By — f1 = Bg(l —I—O{)

Excess bandwidth

BT = Bo + OéBO
~~~

excess bandwdith

Raised-Cosine Pulse Spectrum Properties

The roll-off portion of the spectrum P(f) is odd symmetry
about the midpoints f = £By.

E Nyquist spectrum, POP,(fl

Pulse m /
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E
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The infinite sum of replicas of the raised-cosine pulse
spectrum spaced by 2By is a constant

Z P(f — QmBo) = 2—Bo

m=—0oo




Root Raised-Cosine Pulse Spectrum

The combination of transmit-filter and channel is a root
raised-cosine

Therefore

Baseband Transmission of M-ary PAM

Baud rate is symbol rate. 1 baud is equal to logy M bits per
second.

T, is symbol duration, and T}, is bit duration.

Ts = Tylogy M

To maintain the same received SNR, the transmitted power of
a M-ary PAM system must be increased by a factor of
M?/logy M, compared to a binary PAM system.



The Eye Diagram

Synchronized superposition of many successive symbol
intervals of the distorted waveform appearing at the output of
the receive-filter.
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Figure: (a) Binary data sequence waveform. (b) Eye pattern formed
by superposition.

Reading an Eye Diagram
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Figure: Interpretation of the eye diagram for a baseband binary PAM
system.



Eye Diagram Example

Response
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Figure: Eye diagram of received signal with no noise. (a) M = 2. (b)
M = 4.

Eye Diagram Example
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Figure: Eye diagram of received signal with noise. (a) M = 2. (b)
M = 4.



Timing Recovery

h(1) = gr(t)*c(1)*g7(1)
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Figure: Transfer function A combines the effects of the transmitter pulse
shaping, the channel, and the receiver filter. Receiver samples at
KT /M + .

Timing Recovery

The sampled output
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Decision-Directed Timing Recovery

Timing recovery by minimizing the cluster variance

Jov(r) = avg{(Q(z[k]) — z[k])"}
where )() is to map to the nearest symbol value

(quantization).

Iteratively solving for 7 that minimizes Joy (7).
Update equation:

/ dJCV (T)

R

This is the Gradient Decent method, where 1/ is the step size.

Decision-Directed Timing Recovery

The approximation of the derivative is (approximation because
we swap the order of the derivative and the average)

dev(n) { a(Q(x[) - x[k]>2}

dr dr

= —2vg {(@alr) - ofi) S E

Numerically approximating dx|[k]/dr as

dz[k] dx(KT/M +71)  o(kT/M +71+6) — 2(kT/M + 1 —9)
dr dr - 20

which is valid for small §.



Decision-Directed Timing Recovery

The update equation becomes

Tlk+1] = 7[k] + p-avg {(Q(z[k]) — x[k])
[ZC (%%—7[14:]4—5) —x(kMT-I—T[k‘]—5>]}

where p = p'/9.

x(KT/M + 7[k] + §) and (kT /M + 7[k] — 6) can be
interpolated from the neighborhood of x (kT /M + T[k]).

If the 7[k] values are too noisy, the step size p can be
decreased.

Decision-Directed Timing Recovery

Using Stochastic Gradient Decent method, we simplify the
update equation as

Tk +1] = 7[k] + p-2eg{(Q([k]) — z[k])
-[x(kﬁT+T[k¢]+5> —:L’(kMT+T[k]—5)]}



Decision-Directed Timing Recovery
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Figure: Timing recovery that minimizes the cluster variance. Digital
interpolations and resamplers.

Matched Filter

The transmit-filter g7(t) and the receive-filter gr(t) are
matched filters.

Correlating the received signal with exact the signal shape of
the transmit-filter. This is equivalent to convolving the
received signal with a conjugate time-reversed version of the
transmit-filter.

The matched filter is the optimal linear filter for maximizing
the signal-to-noise ratio (SNR) in the presence of additive
random noise.



Matched Filter — Derivation

The output y of a linear filter g with the input signal x is

inl = 3 gln—Klalk], or y(t) = [ glt — 7)a(r)ar

k=—o0 T

Using signal vector representation, we check a particular
output

y=yl0l= 3 gl-Malkl= 3 A*[kelk] = h'x

k=—oc0 k=—o0

Matched Filter — Derivation

Signal z includes the desirable signal s and additive random

noise w
X=S+W
The filter output is
_wWH, H H
y=h"x= h"'s -+ h”w

signal component  noise component

The SNR is

SNR — hfs]? Ihfs|? ~ |nfspP
 E{|hfiw|?2}  E{(hfw)(hHw)H} hiE{wwH}h




Matched Filter — Derivation

The covariance matrix of noise is Hermitian symmetry

Rw = E{ww!}, RHE =R,
The SNR is
\hHs\2
SNR LA R b
[(Rat ") (Ry%s) 2
(Re*h)H (Ry/’h)
_ R ES)] (R (R )|
B (R*h)H (Ry’h)
= sfR s

The inequality is the Cauchy-Schwarz inequality:
laf’b|? < (af’a)(bfb). It is equal only when b = pa, p real
number.

Matched Filter — Derivation

Therefore, the maximum SNR is achieved when

L2y pR;vl/zs

We have the optimal linear filter as

h = pR_'s

Finally, the (optimal) linear filter g[k] = h*[—k] is the
complex-conjugate time-reversal of the desired signal s.



Linear Equalization

Delay line with (2N + 1) tap-points
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Figure: Adjustable Transversal Equalizer. (a) Delay line whose taps are
uniformly spaced with symbol duration 7. (b) (2N+1) Adjustable
weights {w} (with structural symmetry).

Zero-Forcing Equalization

Overall impulse response p(?) = c(2) % b, ()

Transmit filter- Adjustable
. channel transversal . .
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. e() hog(t)

}«—Tmnsmitlcr and channel ;}, Receiver 4%

Figure: Channel Equalization. (a) First subsystem represents the
combined action of the transmit-filter and the communication channel.
(b) Second subsystem accounts for pulse shaping combined with
distortion equalization in the receiver.



Zero-Forcing Equalization

Impulse response of the equalizer

N

heq(t) = Y wpd(t — kT)
k=—N

Overall impulse response of the cascade filters

p(t) = c(t) @ heq(t)
N

= c(t)® Z wib(t — kT)
k=—N
N

= > wie(t) ®0(t — kT)
k=—N
N

= Z wie(t — kT)

=—N

Zero-Forcing Equalization

Discrete convolution sum

N
p(T) = 3 wee((i—k)T)
k=—N
N
pi = Z WgCi—k
k=—N

Nyquist criterion to eliminate ISI

{¢E i=0
pi =

0 ,i#A0—i=d=41,+2 ..., £N



Zero-Forcing Equalization

We obtain a system of (2N+1) simultaneous equations:

%:wc _JVE Li=0
TR 00 Ji= 4,42, N

In matrix form:

cp +° C_N41 C_N **° C_2N (N 0
CN—1 -*° Co C_1 *++ C_N-1 w—_1 | 0
CN C1 Co C_N wo \/E
| N '+ CcNy1 ey - ¢ || wn | [ 0 |
Toeplitz matrix C w b

Zero-Forcing Equalization

We have
C=wb

Therefore, the weights of the zero-forcing equalizer (linear
filter tapped delay line) are

w=C"pb

The set of coefficient {cx}2__, can be obtained by sending
pseudo-noise (PN) sequence as pilot signals to the receiver.

The PN sequence is known a priori to the receiver.



Minimum Mean Square Error Equalization

The baseband discrete-time received signal is

N
r(iT) = > ces((i — k)T) + n(iT)
k=0
N
ri = Z CkSi—k + M
k=0

where {c} are complex-valued channel taps, N is the channel
length, {s;} are the complex-valued symbols, and n; is the
complex-valued AWGN with E[|n;|?] = o2.

Minimum Mean Squared Error Equalization

The linear equalization is given by
M
H
Yi= ) wirig =w'r;
k=0

where {wy} are complex-valued equalizer weights, M is the

equalizer order, w = [wg, w1, ..., wy]’ and
r, = [Ti, Te—1,... ,?“Z'_M]T.
The received signal vector r; is
r, = CSi + n;
where s; = [si, Si—1y.-- ,Si_L]T, n; = [ni,ni—l, e ,”i—M]T1

L =N + M, and the channel matrix C - --



Minimum Mean Squared Error Equalization

The received signal vector r; is
r; = Cs; +n;

- and C is a dimension (M + 1) x (L + 1) Teoplitz matrix

CO Cl P CM O P O
0 c - cm-1 cm

C: . ) :[CoclncocL]
0 0 co c1 CM

Minimum Mean Squared Error Equalization

The equalizer output y; is the estimate of the transmitted
symbol s;_,, where 0 < 7 < L is the equalizer’s decision delay.

The Mean-Squared Error is

MSE(w) = E

2
Elyiy;] = UEWHCCHwﬂLU?LWHW = Usz <CCH + J_ZIM+1> W
(0}

S



Minimum Mean Squared Error Estimation

The optimal MMSE solution is wg that minimizes the MSE

wo = argmin MSE(w)

2
— argmino? (1 —wle, —wlct +wl <CCH + 0—31) w)
W

Os

The MMSE solution is obtained by setting the gradient vector
of MSE to zero
VwMSE(w) =0

Minimum Mean Squared Error Estimation

The gradient vector of MSE is

2
VwMSE(W) = —c, + (CCH + 0-31) w

0-8
Therefore,
O-S

2
—c + (ccH + J—Z’I) wo =0

The MMSE equalizer weights are

0'2 -
wo=|CC"+ 21| ¢,
US




